Role of preservation methods using deep-freezing and liquid nitrogen in bone allograft characteristics: An in vitro study
DOI:
https://doi.org/10.52225/narra.v4i1.757Keywords:
Bone allograft, deep-freezing, liquid nitrogen, cryopreservation, bone defectAbstract
Bone grafting has emerged as a key solution in bone defect management such as allograft, graft of bone from another individual. However, bone allografts usually undergo rigorous preparation to eliminate immune-triggering elements. The deep-freezing methods may delay graft use, while cryopreservation using liquid nitrogen allows rapid freezing but may alter graft characteristics. The aim of this study was to investigate the post-preservation changes in bone allograft characteristics and to compare the effectiveness of deep-freezing and liquid nitrogen methods using animal model. An experimental study using a post-test only control group design was conducted. Fresh-frozen femoral cortical bone was obtained from male New Zealand white rabbits. Preservation by deep-freezing involved placing bone samples in a -80°C freezer for 30 days. For liquid nitrogen preservation, bone grafts were immersed in liquid nitrogen for 20 min, followed by a 15-min rest at room temperature and a final immersion in 0.9% sodium chloride at 30°C for 15 min. Bone samples then underwent evaluation of cell viability, compression, and bending tests. Cell viability test employed the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and the compression and bending tests used the Universal Testing Machine (UTM). Independent Student t-test or Mann-Whitney U test were used to compare the methods as appropriate. Our study found that the use of deep-freezing and liquid nitrogen resulted in similar outcomes for cell viability, compression, and bending tests, with p-values of 0.302, 0.745, and 0.512, respectively. Further exploration with larger sample sizes may help to optimize the methods for specific applications.
Downloads
Downloads
Issue
Section
Citations
License
Copyright (c) 2024 Rizal Alexander Lisan, Ferdiansyah Mahyudin, Mouli Edward, Dewan S. Buwana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.