Original Article

Exergame for post-stroke rehabilitation among elderly patients: A systematic review and meta-analysis

Teuku F. Dutia*, Ghina Tsurayya and Muhammad A. Naufal
Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

*Corresponding author: faisduto@gmail.com

Abstract

Advancement in gaming technology, including exergame, is thought to offer a promising innovation in rehabilitative treatment owing to its interactive and joyful natures. Elderly, in addition to being prevalent in stroke, they have different perspectives and adaptability toward the utilization of exergame in post-stroke rehabilitation. The aim of this study was to evaluate the effectiveness of exergame-based rehabilitation in ameliorating stroke-associated cognitive impairment among elderly patients. This systematic review followed the Preferred Reporting Item for Systematic Review and Meta-Analysis (PRISMA) guideline. The literatures were retrieved from the searches on PubMed, Scopus, and Embase databases using a combination of ‘exergame’, ‘stroke’, and ‘elderly’ along with their respective synonyms. Included studies were controlled observational studies and randomized clinical trials with subjects’ mean age >60 years old, measuring global cognitive and/or five cognitive domains (attention, language, executive function, memory, and visuospatial ability). Quality appraisals were performed based on the Cochrane ‘risk-of-bias tool’ and Physiotherapy Evidence Database Scale. Studies with high and good qualities were included in the meta-analyses. Six randomized controlled trials involving 179 patients were included in meta-analysis. Studies had variations in terms of type (combination of exergame-based and conventional rehabilitation or exergame-based only) and duration of interventions (30–110 min), length of observation (2–6 weeks), and tools used to examine cognitive outcomes. As compared with conventional rehabilitation, exergame-based rehabilitation was significantly more effective to improve global cognitive based on Montreal Cognitive Assessment Score in acute stroke patients ($n=4$; mean difference (MD) 3.66; 95% confidence interval (95%CI): 2.08, 5.24; $p<0.0001$), but significantly less effective in chronic stroke patients ($n=2$; MD -1.54; 95%CI: -2.28, -0.81; $p<0.0001$). In conclusion, global cognitive of elderly patients with acute strokes could be improved through exergame-based rehabilitation which is more effective as compared with conventional therapy.

Keywords: Acute stroke, elderly, global cognitive, MoCA, virtual reality

Introduction

The prevalence of stroke is high, especially among the elder population [1], and the burden of this disease is predicted to persist in the increasing trend owing to the aging population [2]. Around 67% of patients who recovered from stroke experienced a cognitive impairment [3]. The impairment may occur in one or more cognitive domains namely attention, memory, language, visuospatial abilities, and executive function [4]. This condition increases the risk of lower quality of life, being dependent, and even morbidity and mortality [5]. Currently, cognitive rehabilitation (CR) has been recognized as the standard practice for post-stroke treatment by the Cognitive Rehabilitation Task Force (CRTF) [6]. Growing evidence shows that computerized cognitive training, including exergame, is useful in facilitating cognitive recovery in post-stroke patients [7]. Exergame is a combination of exercise and video game that requires its users to do physical activity during playing it and using a set of devices [8]. Exergame training enables patients to
enhance their motor and cognitive functions in the course of performing game tasks [9]. Several exergame devices that have been utilized for rehabilitative purposes are Nintendo Wii and XBOX Kinect [9,10]. Previously, the effectiveness of exergame-based rehabilitation has been reported to be associated with its playfulness and perceived usefulness [10].

Several systematic reviews and meta-analysis studies have been performed on the benefits of computer-based training as compared with conventional training for post-stroke rehabilitation [11–13]. Computer-based training is convenient and individualized, which contributes to its increased popularity in the rehabilitative treatment [11]. However, none of the aforementioned systematic review and meta-analysis studies specifically covered elderly populations undergoing post-stroke rehabilitation. In the elderly population, response to such technology might be different as compared with the general population, hence affecting the efficacy and adherence to the treatment. For example, the acceptance of exergame-based rehabilitation among elderly people is solely based on efficacy rather than joyfulness [10]. However, concrete evidence needs to be established through a systematic review to evaluate the effectiveness of exergame for elderly patients undergoing post-stroke rehabilitation. Herein, the clinical benefits were assessed based on global cognitive and its five domains namely attention, memory, language, visuospatial abilities, and executive function.

Methods

Search strategy
The literature search was performed on three major scientific literature databases, viz PubMed, Scopus, and Embase on 29 December 2022. Truncated title of ‘exergame-based rehabilitation for elderly post-stroke patients’ along with the synonyms were used as the keyword combination. The keyword was searched within the title, keyword, and abstract of the literature. Boolean operators ‘OR’ and ‘AND’ were used when applicable. The search was refined by publication date yielding a result of published literature from 2010 onward, in which this decision was based on the fact that exergame technology started to advance rapidly after the stated year [14,15], hence more robust protocols. The keyword combinations used in PubMed, Scopus, and Embase, respectively, have been presented in Table S1 (Appendix A).

Inclusion and exclusion criteria
Inclusion criteria of the included studies were based on the PICOS framework [16] are followed. Population (P) was stroke patient groups over the average age of 60 years. Intervention (I) was exergame-based interventions that met the following definition: “the combination of exercise and games”). Control (C) was the comparison group received either a traditional intervention or no intervention. Traditional interventions included any activities designed to be therapeutic for the impairment, activity, or participation level that did not include the use of exergame, ranging from motor and/or cognitive training to health education. Outcome (O) was cognitive function, including global cognition, attention, executive function, memory, language, and visuospatial ability. Study included observational and randomized clinical trials (RCTs) testing the effect of exergame on one or more cognitive outcomes in post-stroke patients with average age of 60 years old.

In this present study, exergame is defined as computerized training that involves physical activities to accomplish gaming task(s) using a set of devices and software. Review articles, case reports, conference abstracts, and editorials were excluded. Non-English written papers were manually excluded.

Screening and selection of the records
The literature screening and selection were guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [17]. Duplicate removal was performed automatically on Mendeley Desktop v1.19.8 after importing all searched records into the software. Thereafter, the screening was carried out through the ‘title and abstract’ and followed by the full content screening based on the eligibility criteria stated previously. The whole screening and selection process was performed independently by two reviewers (T.F.D. and
M.A.N.), as suggested by a previous study [18]. The included studies in the final stage should be approved by the consensus agreement from the two reviewers. Any discrepancies that emerged were resolved by re-checking the articles, discussion, and consultation with the third reviewer (G.T.).

Data extraction and synthesis
Data extracted from the literatures include the patients’ characteristics, details on the exergame used as the intervention, and outcome. The patients’ characteristics were age, gender, the severity level of cognitive impairment, types of stroke, and time since stroke (day). The severity level of cognitive impairment was based on Montreal cognitive assessment (MoCA) at baseline. In the used in the treatment and treatment frequency (min/day) and duration (day). The outcomes included were divided into global cognitive and five domains of cognition viz attention, memory, visuospatial ability, language, and executive function.

All values were presented in mean ± standard deviation (SD), where values presented in the median would be converted by a method proposed in a previous publication [19]. Global cognitive was measured by MoCA and Mini-Mental State Examination (MMSE), Functional Independence Measure (FIM); attention was measured by Corsi Block Tapping Test Forward (Corsi F), Trail Making Test (TMT) A, and Wechsler Adult Intelligence Scale IV Forward (WAIS F); memory was measured by Corsi Block Tapping Test Backward (Corsi B), Ray Auditory Verbal Learning Test Immediate (RAVLT I), Ray Auditory Verbal Learning Test Delay (RAVLT D), and Wechsler Adult Intelligence Scale IV Backward (WAIS B); executive function was measured by TMT B, Wechsler Adult Intelligence Scale IV Coding (WAIS C), and Frontal Assessment Battery (FAB); Visuospatial was measured by Star Cancellation (SCT).

Quality appraisal
The risk of bias in the included studies was assessed with the Cochrane ‘risk-of-bias tool’ [20] by the two researchers (T.F.D. and M.A.N.). The criteria included allocation concealment, random sequence generation, blinding of outcome assessment, blinding of participants and personnel, incomplete outcome data, selective reporting, and any other bias. Each criterion was classified as having ‘low’, ‘high’, or ‘unclear’ risk of bias.

In addition, the risk of bias was assessed by a scoring method specified for physical therapy – Physiotherapy Evidence Database (PEDro) Scale [21]. PEDro is comprised of 11 assessment items, where all studies should pass the first item for being specified in their eligibility criteria. Thereafter, for each assessment item, the study would be given a score ‘1’ if it passed and ‘0’ if it did not. Hence, the range for the total score of the PEDro scale is 0—10 points. Studies with a score of 6—10 would be categorized as ‘high quality’, 4—5 – fair quality, and ≤ 3 – poor quality. Studies with poor quality based on the PEDro scale were excluded from the meta-analysis.

Statistical analysis
The mean difference (MD) and its 95% confidence interval (95% CI) were calculated for data generated from MoCA, Corsi B, Corsi F, TMT A, TMT B, WAIS B, WAIS C, WAIS F, RAVLT D, RAVLT I, FAB, and SCT. The mean difference, 95% CI, p-value, and z-value were calculated to evaluate the significance of exergame effectiveness as compared to the control group. To overcome heterogeneity between studies, associated with different study designs (i.e., frequency, duration, and exergame settings) and patients’ characteristics (i.e., types of stroke, cognitive impairment severity, and time since stroke), random-effect or fixed-effect models were applied in the calculation based on the level of heterogeneity. The heterogeneity was judged based on I-squared (I²), where I²≥50% suggested that the studies analyzed were highly heterogenous [22]. Further, publication bias would be performed if each outcome was reported by more than 10 studies. All statistical analysis was carried out based on the software developed by Cochrane Collaborations – RevMan version 5.4.1. [23].
Results

Characteristics of the included studies
The PRISMA flow diagram for the included studies based on the eligibility criteria in this review has been presented in Figure 1. As many as 6 studies met the inclusion criteria and were included in this review participated by a total number of 179 patients (59% male) ranging from 5 to 25 participants per group. All of the included studies were randomized clinical trials. Among these studies, the average age of participants ranged from 62 to 77 years old. Studies were conducted in Spain, Australia, Turkey, Czech Republic, and United Kingdom. Summary of the characteristics of the included studies along with their outcomes have been presented in Table 1.

Figure 1. PRISMA diagram for the screening and selection process of the published studies.

Results from the quality appraisal
The results of the risk of bias analysis for each included study based on Cochrane 5.2.0. risk of bias tool is presented in Figure 2S (Appendix B). The summary of this analysis is presented in Figure 2. Overall, all included studies performed randomized sequence generation and concealed the allocation process [24–27,29], except for one study having an unclear allocation mechanism [28]. Three studies did not blind the participants [25–27], two studies had unclear mechanisms [24,28], and only one study implemented the double-blinding of participants [29]. Furthermore, there were two studies blinded the assessor when measuring the outcome [25,29], three studies did not blind the subjects [26–28], while one study was unclear [24]. All studies reported the completed outcome [24,26–29], except for [25] having measured outcomes <85% compared to the initial data.
Table 1. Characteristics and PEDro scores of included studies

<table>
<thead>
<tr>
<th>Author, Year, Ref</th>
<th>Country</th>
<th>Characteristics</th>
<th>Treatment</th>
<th>Outcome</th>
<th>PEDro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maier et al., 2017 (24)</td>
<td>Spain</td>
<td>n=6</td>
<td>Age: 66.3±6.8 y.o. M/F: 4/2 CI: Mild Type: 3 HS, 3 IS TSS: 1,211.17±1,116.57 d</td>
<td>3 Cognitive training scenarios using RGS set-up (10 min), 5 d/w for 6 w.</td>
<td>Conventional cognitive task (30 min), 5 d/w for 6 w.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=5</td>
<td>Age: 64±7 y.o. M/F: 3/3 CI: Mild Type: 1 HS, 4 IS TSS: 1,742.60±2,309.99 d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maier et al., 2020 (25)</td>
<td>Spain</td>
<td>n=19</td>
<td>Age: 63.63±6.73 y.o. M/F: 11/8 CI: Mild Type: 8 HS, 11 IS, 1 Undefined TSS: 851.16±805.26 d</td>
<td>3 Cognitive training scenarios using RGS set-up (10 min), 5 d/w for 6 w.</td>
<td>Conventional cognitive task (30 min), 5 d/w for 6 w.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogers, et al., 2019 (26)</td>
<td>Australia</td>
<td>n=10</td>
<td>Age: 64.3±17.4 y.o. M/F: 4/6 CI: Mild</td>
<td>Conventional care (3 h) + VRT (30—40 min), 3 d/w for 4 w.</td>
<td>Conventional care (3 h), 3 d/w for 4 w.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=11</td>
<td>Age: 64.6±12.0 y.o. M/F:5/6 CI: Mild</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Ref</td>
<td>Country</td>
<td>Characteristics</td>
<td>Treatment</td>
<td>Outcome</td>
<td>PEDro</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Ozen, et al., 2021(27)</td>
<td>Turkey</td>
<td>Type: 1 HS, 9 IS TSS: 22.8±14.8 d n= 15 Age: 62.00±13.12 y.o. M/F: 10/5 CI: Mild</td>
<td>Conventional care (1 h, 20 sessions) + CGATSE (30 min) using Rejoyce, 5 d/w for 4 w.</td>
<td>Executive Function SST 46.9±6.2 Control 61.0±11.5</td>
<td>8</td>
</tr>
<tr>
<td>Gueye, et al., 2021(28)</td>
<td>Czech Republic</td>
<td>Type: 3 HS, 12 IS TSS: 151.8 ± 98.4 d n= 25 Age: 66.56 ± 12.26 M/F:14/11 CI: Mild</td>
<td>VRT using Armeo IG (45 min), 4 d/w for 3 w.</td>
<td>Conventional care (45 min), 4 d/w for 3 w.</td>
<td>6</td>
</tr>
<tr>
<td>Chatterjee, et al., 2022(29)</td>
<td>United Kingdom</td>
<td>Type: 5 HS, 20 IS TSS: 14.88± 6.45 d n= 22 Age: 77.54±13.5 y.o. M/F:17/13 CI: mild Type: 3 HS, 27 IS TSS: 9.5±4.75 d n=7 Age: 60.25± 16.53 M/F:4/6 CI: severe (all) Type: 3 HS, 7 IS TSS: 9±8.25 d n=7 Age: 60.25± 16.53 M/F:4/6 CI: severe (all) Type: 3 HS, 7 IS TSS: 9±8.25 d n=7 Age: 60.25± 16.53 M/F:4/6 CI: severe (all) Type: 3 HS, 7 IS TSS: 9±8.25 d</td>
<td>Conventional care + VRT-based using VIRTUE, 5 d/w for 2 w.</td>
<td>Conventional care + sham VRT, 5 d/w for 2 w.</td>
<td>8</td>
</tr>
</tbody>
</table>

CL, Capsule Lenticular; CI, Cognitive Impairment; CGATSE, Computer Game Assisted Task Specific Exercises; Corsi B, Corsi Block Tapping Test Backward; Corsi F, Corsi Block Tapping Test Forward; F, female; FAB, Frontal Assessment Battery; FIM, functional independence measure; GMLT; Groton Maze Learning Task; HS, hemorrhagic stroke; IS, ischemic stroke; M, male; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; NFI, neurobehavioral functioning inventory; OT, occupational therapy; RAVLT, Ray Auditory Verbal Learning Test; Rejoyce, Rehabilitation Joystick for Computerized Exercise; RGS, Rehabilitation Gaming System; SCT, Star Cancellation Test; SSI, Shift Task; TMT, Trail Making Test; VIRTUE, Virtual Reality for Stroke; VRT, virtual reality training; TSS, time since stroke; WAIS, Wechsler Adult Intelligence Scale IV.

*Converted from MMSE
For PEDro scale-based risk of bias analysis, the results are presented in Table 1, where the details of this assessment are presented in Table 2S (Appendix B). The mean PEDro score obtained herein is 7 (SD 0.81) ranging from 6 to 8, categorized as high quality.

![Random sequence generation (selection bias)](https://example.com/image1)
![Allocation concealment (selection bias)](https://example.com/image2)
![Blinding of participants and personnel (performance bias)](https://example.com/image3)
![Blinding of outcome assessment (detection bias)](https://example.com/image4)
![Incomplete outcome data (attrition bias)](https://example.com/image5)
![Selective reporting (reporting bias)](https://example.com/image6)
![Other bias](https://example.com/image7)

Figure 2. Summarized results of the quality appraisal based on Cochrane 5.2.0. risk of bias tool.

Global cognitive

The results of the random effect meta-analysis of the global cognitive based on MoCA is presented in Figure 3. The effect of exergame therapy on global cognitive was assessed in six studies [24–29] according to MoCA score. The effect of exergame therapy on global cognitive favored the experimental group but statistically insignificant (n=6; MD 2.45; 95%CI: -0.28, 5.18; p=0.08). The I² of this analysis exceeded 50% threshold (86%).

Figure 3. Forest plot of the effects of exergame therapy on global cognitive.

Sub-group analysis for global cognitive

The sub-group analysis was performed based on the time to onset duration of stroke (acute/chronic) to reduce the heterogeneity. The fixed effect was used for the analysis since the heterogeneity has been considered low. The results of this sub-group analysis are presented in Figure 4. The first subgroup was based on the participants with acute stroke [26–29] while the second subgroup was based on the participants with chronic stroke [24,25]. Overall, a significantly higher effect was observed in the experimental group among acute stroke patients (n=4; MD 3.66; 95%CI: 2.08, 5.24; p<0.00001). Meanwhile, a significantly lower effect was observed in the experimental group among chronic stroke patients (n=2; MD -1.54; 95%CI: -2.28, -0.81; p<0.0001).
Chronic stroke

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatterjee 2022</td>
<td>22.5</td>
<td>2.3</td>
<td>11</td>
<td>21.5</td>
<td>7.6</td>
<td>7</td>
<td>7.7%</td>
<td>11.00 [5.23, 16.79]</td>
</tr>
<tr>
<td>Rogers 2019</td>
<td>22.8</td>
<td>2.6</td>
<td>10</td>
<td>21.4</td>
<td>3.6</td>
<td>11</td>
<td>35.1%</td>
<td>3.40 [0.75, 6.07]</td>
</tr>
<tr>
<td>Tezaera 2021</td>
<td>25.6</td>
<td>3.5</td>
<td>25</td>
<td>22.0</td>
<td>5.3</td>
<td>25</td>
<td>37.8%</td>
<td>2.29 [0.31, 4.27]</td>
</tr>
<tr>
<td>Ozan 2021</td>
<td>21.56</td>
<td>5.79</td>
<td>15</td>
<td>19.33</td>
<td>6.12</td>
<td>15</td>
<td>13.8%</td>
<td>2.53 [-1.73, 6.79]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>22.57</td>
<td>4.65</td>
<td>65</td>
<td>20.68</td>
<td>5.24</td>
<td>65</td>
<td>3.66</td>
<td>(2.08, 5.24)</td>
</tr>
</tbody>
</table>

Acute stroke

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental Mean</th>
<th>SD</th>
<th>Total</th>
<th>Control Mean</th>
<th>SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maier 2017</td>
<td>21.38</td>
<td>4.11</td>
<td>16</td>
<td>22.21</td>
<td>3.68</td>
<td>16</td>
<td>7.3%</td>
<td>-0.83 [-5.53, 1.17]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>21.57</td>
<td>3.77</td>
<td>21</td>
<td>22.00 [-1.54</td>
<td>-2.28,-0.81]</td>
<td>21</td>
<td>100.0%</td>
<td>Higher in experimental Higher in control</td>
</tr>
</tbody>
</table>

| Heterogeneity: Ch²(9, df = 8 (P = 0.03); f² = 64% |
| Test for overall effect: Z = 4.54 (P < 0.0001) |

Figure 4. Forest plot of the effects of exergame therapy on global cognitive among acute and chronic stroke patients.

Attention, memory, executive function, and visuospatial ability

Attention, memory, executive function, and visuospatial ability were only reported in two studies participated by chronic stroke patients [24,25]. The results of the random effect meta-analysis for attention, memory, executive function, and visuospatial ability outcomes have been presented in Appendix C. Based on all the used assessment tools, the effects of exergame rehabilitation were not statistically significant as compared to the conventional rehabilitation (p>0.05).

Publication bias

Funnel plot were meant to detect the publication bias accurately if only the number of included studies was more than ten, as suggested previously [30,31]. Since only six studies were included in this present review (n<10), the test for publication bias was not feasible.

Discussion

Based on the limited number of evidence retrieved from the systematic review, it is found that exergame-based rehabilitation is significantly more effective to improve cognitive impairment as compared with conventional rehabilitation based on global cognitive scores among elderly patients with acute stroke. Exergames have a dual-task device as a combination of motor activity and simultaneous cognitive training. Physical activity can induce neurogenesis and prolong the duration of cognitive function by increasing cerebral blood flow to the hippocampal dentate gyrus [32]. A previous study has witnessed that VR induces reactivation of the overall frontal cortex to boost cognitive function [33]. Moreover, the cognitive training modulated perception, prediction, and executed goal-oriented movements, which improved cognition by enhancing decision/priority-making (executive functions), visuospatial perception, spatial attention, and memory, such as working memory load and memory-delayed recall [25,34]. However, it is less effective in the case of chronic stroke.

The superior effectiveness of exergame-based rehabilitation has been corroborated by a meta-analysis study on patients with mild cognitive impairment or dementia [35]. Nonetheless, the results obtained herein are contrary to those reported by two meta-analysis studies of patients with stroke-associated cognitive impairment [12,13]. The foregoing studies suggested an insignificant difference between the cognitive function outcomes obtained in experimental (receiving computer- or virtual reality-based rehabilitation) and control groups [12,13]. Each of the two studies had the I²-value of more than 50% suggesting that the analyzed studies were highly non-homogenous [12,13]. Hence, the difference between this present study and the reported study could be ascribed to the absence of sub-group analysis separating the acute and chronic stroke patients [12,13]. One of the included studies in the previous meta-analysis [12] was participated by chronic stroke patients, contributing to negative standard MD favoring the
control group [36]. In line with our present study, the two included studies reporting higher MoCA values in the control group are those participated by chronic stroke patients [24,25]. An explanation for this is the relatively longer neurological sequelae (such as reduced muscle contraction and force generation) experienced by chronic stroke patients as compared to those with acute stroke [37]. This condition becomes a constraint for the chronic stroke patient to fully follow the game instruction, hence less optimal benefit can be gained. Furthermore, the long-term progression of stroke is associated with increased blood barrier brain and impaired mechanisms of clearance by neurotoxic molecules, which leads to neurodegeneration [38]. This situation combined with older age and the long period of stroke is a significant risk factor for rapidly acute decline in global cognition, new learning, verbal memory, and executive function [39,40]. It is worth mentioning that a short training period (6 weeks), which led to adaptation difficulties, might contribute to this less effectiveness of exergame among chronic patients. Physical adaptation to exercise usually occurs after 6–8 weeks [41]. Hence, future studies should be carried in a longer training duration (≥8 weeks).

On the other side, exergames could be implemented in treating patients with stroke, especially in the acute stroke [42]. Exergames are easy for stroke patients to use after receiving instruction and getting familiarized with exergames. Visualization development in exergame is thought to offer more engagement with participants’ cognitive attention and their interest to explore exercise tasks [43]. Further, rehabilitative exergame could be carried out at home with hired caregivers. Nonetheless, some concerns on its ethical implications persist, especially among elderly [44]. These include digital addiction, lack of privacy, and security threats [44].

Several limitations should be acknowledged in the methodology of our study that might lead to biased systematic review and meta-analysis. We only included English-written papers and three papers were not available to us in full-texts. However, the present study remains significant owing to the inclusion of a large pool of patients and most updated records.

Conclusion
Exergame-based rehabilitation is more effective than conventional therapy in ameliorating the global cognitive for elderly patients with acute stroke, but contrarily less effective for those with chronic stroke. It is worth noting that the result should be further proven by comparing both subjects (acute versus chronic strokes) under the same study design. We also recommend future studies to thoroughly evaluate the change in cognitive impairment; not only based on MoCA but also on other assessments on attention, memory, language, executive function, and visuospatial ability.

Ethics approval
Not required.

Acknowledgments
We appreciate the suggestions given by the two referees who appeared anonymous during peer-review.

Conflict of interest
All the authors declare that there are no conflicts of interests.

Funding
No external funding was received.

Underlying data
All data underlying the results are available as part of the article and no additional source data are required. Supplementary files are available on Figshare (https://doi.org/10.6084/m9.figshare.22713460.v1).
How to cite

References

