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Abstract 
Macrovascular complications, including stroke, cardiovascular disease (CVD), and 

peripheral vascular disease (PVD), significantly contribute to morbidity and mortality in 

individuals with type 2 diabetes mellitus (T2DM). The aim of this study was to evaluate 

the performance of artificial intelligence (AI) models in predicting these complications, 

emphasizing applicability in diverse healthcare settings. Following PRISMA guidelines, a 

systematic search of six databases was conducted, yielding 46 eligible studies with 184 AI 

models. Predictive performance was assessed using the area under the receiver operating 

characteristic curve (AUROC). Subgroup analyses examined model performance by 

outcome type, predictor data (lab-only, non-lab, mixed), and algorithm type. 

Heterogeneity was evaluated using I2 statistics, and sensitivity analyses addressed outliers 

and study biases. The pooled AUROC for all AI models was 0.753 (95%CI: 0.740–0.766; 

I2=99.99%). Models predicting PVD achieved the highest AUROC (0.794), followed by 

cerebrovascular diseases (0.770) and CVD (0.741). Gradient-boosting algorithms 

outperformed others (AUROC: 0.789). Models with lab-only predictors had superior 

performance (AUROC: 0.837) compared to mixed (0.759) and non-lab predictors (0.714). 

External validations reported reduced AUROC (0.725), underscoring limitations in 

generalizability. AI models show moderate predictive accuracy for T2DM macrovascular 

complications, with laboratory-based predictors being key to performance. However, the 

limited external validation and reliance on high-resource data restrict implementation in 

low-resource settings. Future efforts should focus on non-lab predictors, external 

validation, and context-appropriate AI solutions to enhance global applicability. 

Keywords: Artificial intelligence, cardiovascular disease, type 2 diabetes mellitus, stroke, 

diabetic nephropathy and vascular disease 

Introduction 

At least 800 million people were estimated to live with diabetes in 2022, of which more than 

90% were type 2 diabetes mellitus (T2DM) [1]. T2DM complications, such as stroke, 

cardiovascular diseases (CVDs), and peripheral vascular diseases (PVDs), increase the 5-year 

mortality, particularly for people living in low- and middle-income countries (LMICs) [2]. 

mailto:sydney.tjandra@ui.ac.id
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According to World Health Organization (WHO), 75% of CVD deaths occur in LMICs [3]. As the 

global burden continues to rise, there is an urgent need for precise and early risk stratification 

methods to enable timely preventive measures for T2DM complications [4]. In this context, the 

use of artificial intelligence (AI) and machine learning models has garnered significant interest 

for their potential to enhance predictive accuracy in the management of T2DM complications 

[5,6]. These technologies promise to transform traditional healthcare approaches by leveraging 

vast amounts of data to uncover complex patterns and relationships that may not be readily 

apparent through conventional statistical methods [7]. 

Previous systematic reviews have primarily focused on the potential of AI in various aspects 

of T2DM care, particularly in predicting the onset of the disease  [8,9]. For instance, recent meta-

analyses have demonstrated the utility of AI in forecasting T2DM-related outcomes [8-10], yet 

none have comprehensively addressed the prediction of macrovascular complications associated 

explicitly with T2DM. This gap highlights the necessity of a focused investigation into how AI can 

be harnessed to predict complications like stroke, CVD, and PVD in patients already diagnosed 

with T2DM, including its deployment in low-resource settings [13]. 

The aim of this study was to explore the performance of machine learning algorithms in 

predicting the risk of macrovascular complications among individuals with T2DM, specifically 

the predictive capabilities of AI models in forecasting stroke, CVD, and PVD. This meta-analysis 

provided an in-depth analysis of subgroup performances, comparing models with various 

predictor types, including lab-only and mixed predictors, and examining the implications of these 

differences. We also highlight the challenges and limitations of current AI models, particularly 

their applicability in low-resource settings.  

Methods 

Protocol registration  

This review was systematically developed, conducted, and reported following the preferred 

reporting items for systematic review and meta-analysis (PRISMA) checklist [14] and the filled 

PRISMA checklist is presented in Underlying data. The protocol has been registered at The 

International Prospective Register of Systematic Reviews (PROSPERO) under the reference ID 

CRD42023489167. 

Databases and search strategy 

Six databases (Scopus, PubMed, Embase, Wiley Online Library, IEEE Xplore, and Google 

Scholar) were searched for articles published between January 1, 2000, and November 30, 2023. 

Keywords employed were “type 2 diabetes,” “artificial intelligence,” “prediction,” “complication,” 

“stroke,” “cardiovascular disease,” and “peripheral vascular disease,” as well as their MeSH terms 

and subsets, combined with Boolean operators (Underlying data). Search results were 

exported to Rayyan (www.rayyan.ai) and duplicates were removed, followed by manual 

deduplication and screening decisions. 

Eligibility criteria 

Each article was screened for the participants, intervention, comparison, outcomes, and 

timeframe (PICOT) inclusion criteria [15], as presented in Table 1, by at least two investigators 

independently (AN, ST, RH, SW). The articles should include: (1) adults aged 18 years or above 

with T2DM; (2) intervention developed or implemented with AI, such as machine learning and 

deep learning; (3) outcome of prediction performances for stroke, CVD, or PVD; (4) diagnostic or 

prognostic studies with a cohort or case-control design capable of exhibiting temporality; (5) use 

of any actual medical dataset; and (6) written in English. We excluded studies that (1) had mixed 

populations with type 1 and/or prediabetes patients; (2) mainly explained theoretical models not 

tested on human subjects; (3) involved drugs as the intervention; (4) were reviews, framework 

developments, conference abstracts, proposals, editorials, commentaries, and qualitative studies; 

and (5) had irretrievable full-text. After titles and abstracts were screened on Rayyan, full-text 

screening was conducted to reconfirm eligibility. Discrepancies were resolved through consensus. 

 

http://www.rayyan.ai/


Nur et al. Narra J 2025; 5 (1): e2116 - http://doi.org/10.52225/narra.v5i1.2116        

Page 3 of 16 

R
ev

ie
w

 A
rt

ic
le

 

 

 

Table 1. PICOT inclusion and exclusion criteria 

 Participants  
(P) 

Intervention  
(I) 

Comparison 
(C) 

Outcomes  
(O) 

Timeframe 
(T) 

Others 

Inclusion 
criteria 

Adults with type 2 
diabetes mellitus; 
actual medical 
records/datasets 

Artificial 
intelligence (AI) 
development 
and 
implementation, 
including 
machine 
learning and 
deep learning 

Standard or 
best-practice 
diagnostic 
modalities 

Prediction 
performances 
for stroke, 
cardiovascular 
disease, or 
peripheral 
vascular 
disease 

Between 
January 1, 
2000, to 
November 
30, 2023 

Diagnostic or 
prognostic 
studies; 
English 
language 

Exclusion 
criteria 

Mixed populations 
with other types of 
diabetes or 
prediabetes; non-
human subjects 

Classical 
statistical 
models such as 
logistic 
regression, 
without specific 
mention of AI; 
drug 
involvement 

 Prediction 
performances 
for diabetes; 
qualitative 
studies  

 Irretrievable 
full-text; 
theoretical 
models; 
reviews; 
framework 
developments; 
proposals 

Data extraction 

A data extraction instrument was developed to tabulate several characteristics and details from 

all included studies, including (1) author and year, (2) country of origin, (3) study design, (4) data 

source, (5) single or multi-centered, (6) population profile (including number of patients, age, 

and proportion of males), (7) predictors, (8) whether external validation was employed, (9) 

AI/machine learning algorithm used, (10) outcome (stroke, CVD, or PVD), (11) data period and 

follow-up, (12) data pre-processing details, and (13) internal validation setup. We also extracted 

the main outcome(s) model performances in metrics such as F-measures, the area under the 

receiving operating curve (AUROC), c-statistics, sensitivity/recall, specificity, accuracy, and 

precision/positive predictive values. 

Risk of bias assessment 

Included studies were divided among AN, ST, DY, and AK, with each study being independently 

assessed by two investigators for risk of bias and applicability using the signaling questions on 

the Prediction model Risk of Bias Assessment Tool (PROBAST) [6]. Any discrepancies were 

discussed to reach a consensus. 

Quantitative data analysis 

Studies reporting AUROCs as model performances were aggregated through a random-effects 

meta-analysis with R. When neither the standard error, range, nor standard deviation was 

available, we ran the Hanley and McNeil’s approach [16] with R to approximate the standard 

error based on the AUROC, sample size, and number of complication cases [14-16]. To assess 

publication bias, funnel plots and Egger’s regression were generated with MedCalc (MedCalc 

Software Ltd., Ostend, Belgium). Moreover, outliers, defined as models whose 95% confidence 

intervals did not overlap with meta-analysis result, were excluded to generate sensitivity analyses. 

As substantial heterogeneity remains, subgroup analyses were conducted for outcome types, 

external validation, algorithms, country income levels, risk of bias, missing data process details, 

cross-validation, and predictor data. All visualizations were generated with R 4.4.2 in RStudio (R 

Foundation for Statistical Computing, Vienna, Austria). 

Results 

Study characteristics 

A total of 2,513 studies were found during the initial search across seven databases in addition to 

hand searching. After removing 512 duplicate records, 2,001 records were screened for their titles 

and abstracts. Subsequently, 1,895 records were excluded, leaving 106 reports to be retrieved. 

Studies without available full texts were excluded, resulting in 95 studies being assessed for 
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eligibility. Of these, 49 studies were excluded for various reasons: unsuitable population (17 

studies), irrelevant outcome (29 studies), unsuitable study design (two studies), and text not in 

English (one study). Ultimately, 46 studies were included in the systematic review, with 30 

included in the quantitative analysis. The selection process is depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. PRISMA flowchart of studies selection process.  

The overall characteristics of the study, including the participants and outcomes of each 

study, are presented in Table 2. The systematic review included 46 studies from various 

countries, of which the majority of studies (29; 63%) were conducted in high-income countries 

(HICs) [19-40], followed by upper-middle-income countries (UMICs) (9; 19.6%) [36,41-48], and 

low- and middle-income countries (LMICs) (8; 17.4%) [49-56]. India contributed the most 

studies from LMICs, China dominated the UMICs, and the United States led in HICs [36,41-48]. 

Most data were sourced from hospital medical records in the respective countries [21,24-

27,29,32,33,38,39,41,42,45-49,52-54,57-59] and national database centers [20,22,31,34-

37,40,44,50,51,56,60-63], while some datasets were from specific trials or studies 

[19,23,28,30,43,64]. Sample sizes from the studies varied from 111 [47] to 1,910,674 [31]. 

Complete study characteristics are detailed in the Underlying Data. 

A total of 250 predictors were identified across 46 studies and grouped into four categories: 

demographics (13 predictors; 5.2%), clinical (50 predictors; 20%), comorbidity (33 predictors; 

13.2%), and laboratory (154 predictors; 61.6%) (Figure 2). The most commonly used 

demographic predictors were age, sex, and race, while clinical factors such as body mass index, 

blood pressure, and antidiabetic medication history were frequently used. Comorbidities such as 

hypertension, heart disease, and renal disease appeared in 50% of the studies, while laboratory 

parameters such as HbA1c, high-density lipoproteins, and cholesterol levels were the most 

commonly used laboratory predictors (Figure 2).  
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Figure 2. Heatmap of most common predictor features in included studies, ordered and 
categorized. The presence of color for specific predictors indicates that the corresponding 
reference study incorporated those predictors in the model. 

Quality of the studies 

The overall risk of bias indicates that 78% of the articles were rated as having a high or uncertain 

risk of bias, with specific distributions of nine articles rated as low risk [21,23-26,39,41,42,60], 10 

as unclear risk [19,33-38,45,48,59], and 27 as high risk [20,22,27-32,36,40,43,44,46,47,49,50,

52-57,59,62,64] (Figure 3). The high risk of bias predominantly originated from the outcome 

domain due to the uncertainty in determining outcomes without knowledge of predictor 

information. Additionally, the analysis domain contributed significantly to the high risk, 

primarily due to inadequate handling of missing data or improper imputation methods and the 

low number of participants with the outcome. On the other hand, nearly all studies (91%) showed 

no concerns regarding applicability concerns.  

 

 

 

 

 

 

 

 

 

 
Figure 3. PROBAST summary of 46 studies included. 
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Table 2. Characteristics of the included studies in the systematic review 

Author (Year) Country Types of predictors Algorithm Outcome 
Demographic 
information 

Clinical 
data 

Comorbidities Laboratory 
parameters 

Nanda (2022) [49] India + + + + RF, KNN, AdaBoost, SVM-PolyK, SVM-RBF, Naive-Bayes, 
Bagging, Stacking (RF + KNN) 

Diabetic foot ulcer type 

Senthilkumar 
(2023) [50] 

India + + N/A + LR, RF, AdaBoost, Multilayer perceptron. CVD 

Sonia (2023) [51] India N/A + N/A N/A NN (DNN, AlexNet, LeNet-5, DNHRV), Inception, VGG-16, 
LSTM 

CVD 

Ding (2023) [41] China + + + + LR, Gradient Boosting (AdaBoost, GBDT), RF, SVM CAD,CeVD, PVD 
Abegaz (2023) [19] United States + + N/A + RF, XGBoost, LR, Weighted ensemble model MACE, MI, HF, stroke  
Selvarathi (2023) 
[52] 

India + + + + HWNN, CCGLSTM,Traditional LSTM, Convolution LSTM, 
Convolution GLSTM 

CVD 

Vimont (2023) [20] France + + N/A + LR, RF, NN CVD (HF, PAD, MI, UA, 
TIA, CV-related death), 
stroke 

Gandin (2023) [21] Italy + + + + Cox proportional hazards regression, Non-linear PH-DNN HF 
Zhong (2022) [42] China + + + + NN (KNN, ANN), SVM linear, SVM radial, Decision tree, 

RF, XGBoost, LR (LR with Lasso) 
ACS 

Miran (2021) [22] United States + N/A + N/A LR, NN, RF, XGBoost HF 
Momenzadeh 
(2022) [23] 

United States + + N/A + GB (AdaBoost, XGBoost), SVC, ET, RF, LR CVD 

Nicolucci (2022) 
[24] 

Italy + + N/A + XGBoost CVD 

Hong (2021) [25] United States + + N/A + Cox proportional hazard, LASSO regression CHD, HF, stroke  
Aminian (2020) 
[26] 

United States + + N/A + Cox-based (Cox proportional hazards, exponential, Fine-
Gray), RF 

Coronary artery events 

Athanasiou (2020) 
[27] 

Greece + + + + XGBoost CVD 

Miao (2020) [43] China + + N/A + KNN, SVM CVD 
Hossain (2021) [28] Australia +   +   LR, SVM, Decision Tree, NB, RF KNN. CVD 
Zarkogianni (2018) 
[29] 

Greece + + N/A + RF, Hybrid ensemble, SOM classifier, BLR model, CART, 
NB, FFN 

CHD, stroke 

Segar (2019) [30] United States + + + + RSF, Cox-based method HF 
Derevitskii (2020) 
[44] 

Russia + + N/A N/A XGBoost CHF, AF 

Ljubic (2020) [31] United States N/A + N/A N/A RNN, RNN GRU AP, atherosclerosis, 
IHD, MI, PVD 

Fan (2020) [45] China + + N/A + RF CHD 
Dalakleidi (2013) 
[32] 

Greece + + N/A + GA CVD 

Xu (2017) [46] China + N/A N/A + LR CeVD 
Lee (2023) [33] South Korea + + N/A + GRU-ODE-Bayes-based CVD 
Wang (2023) [47] China N/A N/A N/A + RF  Diabetic foot 
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Author (Year) Country Types of predictors Algorithm Outcome 
Demographic 
information 

Clinical 
data 

Comorbidities Laboratory 
parameters 

Ozturk (2023) [35] United 
Kingdom 

N/A + N/A + NN, RF, NB, SVM, Ensemble Hypertension 

Kanda (2022) [60] Japan + + N/A + XGBoost, NN, LR, Cox proportional hazard CVD 
Lee (2021) [34] Hong Kong + + N/A + RSF, Multivariate Cox model, CISF AMI 
Liu (2020) [36] United States + + N/A N/A MTFL, OS-MTL, Private-shared MTL, Single-task learning 

with Lasso 
PVD, CVD, CeVD 

Farzi (2017) [53] Iran + + N/A + RF, J48 (Decision Tree), LMT, NBTree, SMO, MLP, Naïve 
Bayes, Bayes Net, RBF 

CVD 

Longato (2020) [37] Italy + + N/A N/A NN CVD, stroke 
Giardina (2006) 
[38] 

United 
Kingdom 

+ + N/A + WkNN, kNN, GA, RI CHD 

Phan (2023) [39] Taiwan + + N/A + LR, GB (GBM, LGBM, AdaBoost, XGB), RF, Voting 
ensemble, LDA  

Ischemic stroke 

Rahman (2018) [54] Bangladesh + + + + LR, RF, Decision Tree with AdaBoost, SVM, NB, Decision 
Tree 

CVD 

Liu (2018) [40] United States + + N/A N/A MTL, STL Vascular disease 
Rajathi (2020) [55] India + + N/A + HWNN, SOM, MTLBO CVD 
Liu (2020) [61] China + N/A N/A + RF, BN, NB, C5.0  Macrovascular 

complications, diabetic 
foot 

Dworzynski (2020) 
[62] 

Denmark + + N/A N/A LR (Reference LR, Logistic ridge regression), RF, GB HF, MI, stroke, CVD 

Afarideh (2016) [56] Iran + + N/A + Cox proportional hazards, ANN CVD 
Liu (2018) [63] United States + + N/A   LR, MTL (STL, MTFL, MTRL, FETR, TREFLES) Vascular disease 
Mei (2019) [48] China + + N/A + LR, NN (TSNN, KENN), Decision fusion, Pooled cohort 

equations 
CVD 

Sierra-Sosa (2019) 
[57] 

Spain + N/A + N/A LR (LR Ridge, LR Lasso), LDA, SVM MI 

Thomas (2018) [64] United States + + N/A + Patient network  Stroke, MI, HF 
Kim (2019) [58] United States + + + + MTL, GBM, LASSO IHD, CHF, CVD, PVD 
Kim (2018) [59] United States + + + + MTL, Lasso-penalized Cox-regression IHD, PVD, CHF, CVD 

AMI: acute myocardial infarction; ANN: artificial neural network; BN: Bayesian network; CAD: coronary artery disease; CeVD: cerebrovascular disease; CHF: congestive heart failure; 
CISF: conditional inference survival forest; CVD: cardiovascular disease; FETR: feature and task relationship learning; GA: genetic algorithm; GB: gradient boosting; GBDT: gradient 
boosting decision tree; GRU: gated recurrent unit; HF: heart failure; HWNN: hybrid wavelet neural network; IHD: ischemic heart disease; KENN: knowledge-enhanced neural network; 
LDA: linear discriminant analysis; LGBM: light gradient boosting machine; LR: logistic regression; MACE: major adverse cardiopulmonary events; MI: myocardial infarction; MLP: 
multi-layer perception; MTLBO: modified teaching learning based optimization; MTLR: multi-task relationship learning; MTFL: multi-task feature learning; N/A: not applicable; OS-
MTL: outcome-specific multi-task learning; PAD: peripheral artery disease; PH-DNN: proportional hazards deep neural network; PVD: peripheral vascular disease; RBF: radial base 
function; RF: random forest; RI: random initialization; RSF: random survival forest; SOM: self-organized mapping; STL: single task learning; SVM: support vector machine; TIA: 
transient ischemic attack; TSNN: teacher-student network; UA: unstable angina; WkNN: weighted k-nearest neighbors; XGB: extreme gradient boosting. 

 

 



Nur et al. Narra J 2025; 5 (1): e2116 - http://doi.org/10.52225/narra.v5i1.2116        

Page 8 of 16 

R
ev

ie
w

 A
rt

ic
le

 

 

 

Predictive performance 

The most common machine learning algorithm used was gradient boosting, which led to the 

highest AUROC performance (0.789), followed by random forests (AUROC of 0.776) (Table 3). 

Neural networks, despite their ability to capture complex relationships, were less frequently used 

due to their high computational demands and the need for large datasets, achieving an AUROC 

of 0.759. A majority of studies (29; 63.04%) utilized k-fold cross-validation for internal 

validation. The outcomes assessed included CVD (coronary artery disease, myocardial infarction, 

heart failure, atrial fibrillation), cerebrovascular disease (stroke), and PVD. 

All 184 models were pooled with a random effects model, obtaining an AUROC of 0.753 

(95%CI: 0.740–0.766; I2=99.99%; p<0.001), with significant overall publication bias (p-Egger of 

0.026). For 80 models of CVDs, an AUROC of 0.741 (95%CI: 0.721–0.760; I2=99.78%; p<0.001) 

was obtained. Meanwhile, 25 models of PVD and 38 models of cerebrovascular diseases obtained 

AUROCs of 0.794 (95%CI: 0.758–0.831; I2=97.23%; p<0.001) and 0.770 (95%CI: 0.743–0.797; 

I2=99.73%; p<0.001) respectively. Subgroup analysis results are detailed in Table 3. 

Table 3. Subgroup analyses summary of areas under the receiver operating characteristics 

(AUROCs) of machine learning prediction models for type 2 diabetes macrovascular 

complications based on various characteristics 

Subgroups Number of 
prediction 
model  

Random 
effect 
AUROC 

Lower 
95%CI 

Higher 
95%CI 

Heterogeneity 
(%) 

p-value 

All studies 184 0.753 0.740 0.766 99.99 <0.001 
Outcome types 

Cardiovascular 80 0.741 0.721 0.76 99.78 <0.001 
Peripheral 
vascular/diabetic foot 

25 0.794 0.758 0.831 97.23 <0.001 

Stroke/cerebrovascular 38 0.770 0.743 0.797 99.73 <0.001 
Mixed 41 0.741 0.716 0.765 100 <0.001 

External validation data 
Yes 56 0.725 0.708 0.742 97.85 <0.001 
No 128 0.765 0.749 0.782 99.99 <0.001 

Machine learning algorithm 
Cox-based 14 0.712 0.664 0.760 98.53 <0.001 
Gradient boosting 37 0.789 0.761 0.817 99.56 <0.001 
Logistic regression 23 0.731 0.711 0.752 99.55 <0.001 
Multi-task learning 18 0.699 0.665 0.733 99.99 <0.001 
Neural network 11 0.759 0.722 0.797 98.55 <0.001 
Random forest 30 0.776 0.742 0.810 99.73 <0.001 
Others 51 0.752 0.726 0.777 99.99 <0.001 

Country income 
HIC 134 0.737 0.723 0.751 99.99 <0.001 
LIC/LMIC/UMIC 50 0.800 0.774 0.825 97.31 <0.001 

Risk of bias 
Low/medium 110 0.780 0.765 0.794 99.76 <0.001 
High 74 0.711 0.691 0.731 99.99 <0.001 

Missing data process detailed 
Yes 114 0.775 0.760 0.790 99.66 <0.001 
No 70 0.717 0.696 0.738 99.99 <0.001 

Cross-validation 
Yes 127 0.759 0.743 0.775 99.99 <0.001 
No 57 0.739 0.717 0.761 98.88 <0.001 

Predictor data 
No lab 29 0.714 0.696 0.731 100 <0.001 
Lab only 3 0.837 0.784 0.890 0 <0.001 
Mixed 152 0.759 0.745 0.774 99.98 <0.001 

CI: confidence interval; HIC: high-income countries; LIC: low-income countries; LMIC: lower-middle-
income countries; UMIC: upper-middle-income countries 
 

We excluded outliers and retrieved 83 models with an overall AUROC of 0.746 (95%CI: 

0.742–0.75; I2=99.86%; p<0.001). This is comparable to the initial meta-analysis, showing 

robustness despite outliers. Similarly, outcome and predictor subgroup sensitivity analyses were 

conducted, with results in Figure 4 and Table 4. Most notably, the PVD outcome subgroup had 

an AUROC of 0.820 (95%CI: 0.798–0.842; p<0.001) with a heterogeneity of I2=0%.  
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Figure 4. Forest plots of artificial intelligence areas under the operating curve (AUROCs), 
excluding outliers, in predicting T2DM complications: (A) cardiovascular (AUROC: 0.741; 
95%CI: 0.733–0.749; p-Het<0.001; overall p<0.001); (B) peripheral vascular (AUROC: 0.820; 
95%CI: 0.798–0.842; p-Het: 0.864; overall p<0.001); (C) cerebrovascular (AUROC: 0.756; 
95%CI: 0.747–0.764; p-Het<0.001; overall p<0.001); and (D) mixed (AUROC: 0.737; 95%CI: 
0.729–0.745; p-Het: 0.653; overall p<0.001).  
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Table 4. Sensitivity analyses summary of AUROCs of machine learning prediction models for type 

2 diabetes macrovascular complications based on outcomes and predictors 

Subgroups Number of 
prediction 
model  

Random 
effect 
AUROC 

Lower 
95%CI 

Higher 
95%CI 

Heterogeneit
y (%) 

p-value 

All studies 83 0.746 0.742 0.750 99.86 <0.001 
Outcome types 

Cardiovascular 38 0.741 0.733 0.749 80.99 <0.001 
Peripheral 
vascular/diabetic foot 

15 0.820 0.798 0.842 0.00 <0.001 

Stroke/cerebrovascular 18 0.756 0.747 0.764 92.42 <0.001 
Mixed 16 0.737 0.729 0.745 99.97 <0.001 

External validation data       
No lab 15 0.710 0.703 0.718 99.90 <0.001 
Mixed 73 0.753 0.748 0.758 92.31 <0.001 

AUROC: area under the receiver operating characteristic; CI: confidence interval 

 

In the lab-only predictors subgroup, no outliers were identified. We observed significant 

publication bias for peripheral vascular (p-Egger of 0.028) and cerebrovascular complications (p-

Egger of 0.018). Funnel plots of AUROCs against standard errors are presented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Funnel plots of artificial intelligence areas under the operating curve (AUROCs), 
excluding outliers, in predicting type 2 diabetes complications: (A) cardiovascular (p-Egger: 
0.236); (B) peripheral vascular (p-Egger: 0.028); (C) cerebrovascular (p-Egger: 0.018); and (D) 
mixed (p-Egger: 0.938).  
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Discussions 
The pooled analysis of 184 models demonstrated a moderate overall performance with an AUROC 

of 0.753. The models exhibited varying levels of performance based on the specific outcome types. 

For CVD outcomes, the AUROC was 0.741, while models predicting PVD and cerebrovascular 

disease achieved higher AUROCs of 0.794 and 0.770, respectively. A meta-analysis developed a 

random forest model with the highest AUROC of 0.918 for predicting diabetic foot ulcers in 

individuals with T2DM [65]. These findings suggest that while the models generally exhibit 

robustness, their effectiveness may differ depending on the type of predicted macrovascular 

complication. 

High heterogeneity was observed across the included studies, with I2 values approaching 

100% in most cases. This substantial heterogeneity emphasizes the variability in model 

performance, which could be attributed to differences in study populations, data sources, 

predictor variables, and machine learning algorithms. The high heterogeneity also underscores 

the significance of context-specific factors and suggests that predictive accuracy might improve 

with models tailored to specific populations and settings. Sensitivity analysis further supports the 

robustness of the findings, with AUROC slightly decreasing to 0.746 after excluding outliers, 

while heterogeneity remained high (I2=99.86%). This consistency indicates that extreme values 

did not unduly influence the overall conclusions. 

The application of these machine learning models in predicting the risk of T2DM 

complications might help overcome some limitations of existing conventional scoring systems. 

For instance, the Framingham risk score, a well-established heart disease risk assessment tool, 

was developed for the general population rather than individuals with T2DM [18]. Consequently, 

risk scores designed for the general population may not provide optimal discriminatory ability 

for individuals with T2DM [67,68]. 

Distribution of AI model development suggests that a country’s income level may influence 

the extent of AI research and publications. A previous bibliometric study mapped the publication 

of AI in healthcare, noting that the United States and China were among the top nine countries, 

with the United States leading (41.84%) and China second (14.70%) [69]. Our study also 

highlighted that the most prominent institutions funding AI research were from the United 

States. The disparity in the number of studies from non-high-income countries might be due to 

limited healthcare or AI infrastructure and resources, despite the fact that 80% of the global 

population resides in these countries where public health challenges are growing [70,71]. 

Therefore, research in developing countries, including on AI, is essential to ensure that findings 

are applicable to their specific contexts. 

Given the varying availability of predictor data, testing an existing machine learning model 

in different settings requires consideration of data availability, especially in low-resource settings 

where laboratory parameters may not be readily accessible. In our subgroup analysis, models 

without laboratory data (using only demographic, clinical, or comorbidity data) had an AUROC 

of 0.714, while models with laboratory data achieved an AUROC of 0.837. This demonstrates that 

non-lab-based models can perform comparably to lab-based models, and suggests that further 

improvement in non-lab models is feasible [72,73].  

To improve performance, several strategies can be employed, such as hyperparameter tuning 

and exploring different algorithms that can optimize the models [74]. In addition, models that 

described their missing data handling tended to perform better, suggesting that appropriate 

imputation techniques, such as those utilizing autoencoders, would be beneficial in improving 

data pre-processing for AI model development [25-27]. With regards to algorithm used, boosting 

algorithms and random forests, being ensemble learning algorithms, offer advantages such as 

reduced risk of overfitting and effective handling of both categorical and numerical predictors 

[78,79]. 

External validation led to a consistent decrease in model performance, with an AUROC of 

0.725 compared to the AUROC of 0.765 observed during internal validation. This result suggests 

that development models tend to overestimate performance [30-32]. Only 11 (23.91%) studies 

performed external validation, an important step in assessing the generalizability of prediction 

models [83]. For certain studies with small or non-representative datasets, external validation 
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may not be necessary [84]. However, for comprehensive T2DM complication prediction models, 

external validation is crucial to ensure applicability across diverse clinical settings [85]. 

Furthermore, our analysis revealed significant risks of bias in the studies included in this 

review. Many studies exhibited a high or unclear risk of bias due to issues like incomplete data, 

insufficient population sampling, and inadequate consideration of key predictors. The reliance 

on internal validation and the underrepresentation of diverse patient groups further contribute 

to these biases [86]. Multi-center studies or those based on national databases tend to have lower 

bias [87], and future studies should prioritize diverse, high-quality training data and effective 

data handling to improve model accuracy and reliability [88]. 

The application of AI and machine learning in predicting complications is still in its early 

stages but holds significant promise. Early and accurate diagnosis could enable timely 

interventions, but this requires rigorous validation and scrutiny. Future research should focus on 

enhancing the predictive power of non-lab-based models and conducting extensive external 

validations. Additionally, to ensure the ethical and practical use of AI or machine learning in 

healthcare, a secure framework focusing on data protection, patient consent, and algorithmic 

transparency must be established. Collaboration among policymakers, bioethicists, and 

researchers is crucial to overcoming the challenges in AI model implementation. 

Our study provides valuable insights into the capabilities and limitations of AI models in 

predicting T2DM complications. The inclusion of studies from multiple countries with varying 

income levels offers a broad perspective. However, high heterogeneity in the included studies is 

a key limitation, albeit commonly observed in published AI model performance meta-analyses 

[81,82]. Moreover, external validation is limited, and superior predictive accuracy relies on 

laboratory data. Future studies should focus on improving non-lab-based models to enhance their 

applicability in low-resource settings. 

Conclusions 
This review highlights the potential of machine learning models in predicting macrovascular 

complications in T2DM. Despite moderate performance and high heterogeneity, the findings 

underscore the need for context-specific models tailored to specific populations. Future research 

should aim to improve the performance of non-lab-based models and expand external validation 

to enhance their applicability in diverse clinical settings. Collaboration and ethical considerations 

will be critical to the successful integration of AI in healthcare. 
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