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Abstract 
Skin cancer is one of the most prevalent cancers worldwide, with early diagnosis being 

critical for improving survival rates. Dermoscopy, a non-invasive imaging tool, is widely 

used for identifying pigmented skin lesions. However, its accuracy is heavily dependent 

on expert interpretation, which introduces variability and limits accessibility in resource-

constrained settings. This highlighted the need for automated solutions to enhance 

diagnostic consistency and aid in early detection. The aim of this study was to develop a 

refined machine-learning framework for classifying pigmented skin lesions using 

dermoscopy images. We employed an enhanced Inception-V3 model, a state-of-the-art 

convolutional neural network, integrated with a simplified soft-attention mechanism, 

advanced data augmentation techniques, and Bayesian hyperparameter tuning. These 

innovations improved the model’s ability to accurately focus on and identify relevant 

lesion features, marking a significant advancement in the field. Using the ISIC-2019 

dataset, a publicly available resource containing dermoscopy images classified into eight 

diagnostic categories, we implemented preprocessing steps such as resizing, cleaning, and 

data balancing. Additionally, ImageNet transfer learning and Bayesian optimization were 

applied to refine the model. The inclusion of a soft-attention mechanism further enhanced 

the model’s capacity to identify patterns within lesion images. Our model exhibited 

outstanding performance on the ISIC-2019 dataset, achieving a sensitivity of 98.5%, 

specificity of 99.62%, precision of 97.42%, accuracy of 97.38%, an F1 score of 97.34%, and 

an area under the curve (AUC) of 0.99. These metrics underscored the model’s superior 

capability in accurate and reliable classification of pigmented skin lesions, surpassing 

current benchmarks and demonstrating significant advancements over existing 

methodologies. 

Keywords: Medical image processing, dermoscopy, pigmented skin lesion, 

convolutional neural network, Inception-V3 

Introduction 

The classification of pigmented skin lesions (PSLs) over dermoscopy techniques has become a 

significant subject in dermatology and skin oncology in recent years [1,2]. Early and accurate 

identification of skin lesions, such as melanoma, can significantly reduce mortality rates, given 

the high global prevalence of skin cancer [3]. A report published by the American Cancer Society 

stated an increased trend in skin cancer prevalence over the past 30 years, with an average annual 

percent change (AAPC) of 1.8% [4]. Meanwhile, according to the Australian Institute of Health 
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and Welfare, the AAPC rate is 1.7% in the last 25 years [5]. However, challenges remain in the 

consistent and objective interpretation of dermoscopic images, as it often requires specialized 

expertise and can be subjective. 

Artificial intelligence, particularly deep learning, is pivotal in advancing skin lesion research, 

offering exceptional diagnostic performance, especially with dermoscopy images. Key 

architectures and AI methods are driving improvements in early detection and reliable diagnosis, 

shaping the future of this field [6,7]. Its main advantage is the ability to process raw data directly, 

reducing the need for complex pre-processing. This allows computer-aided diagnostic (CAD) 

systems to detect abnormalities and disease markers more accurately, which sometimes can 

surpass medical experts. Research in the field of PSLs primarily concentrates on three key areas: 

segmentation [8-12], feature extraction [13-17], and classification [18-23]. Furthermore, the field 

of interpretable machine learning (IML), also known as explainable artificial intelligence (XAI), 

is rapidly growing, intending to tackle ethical challenges in the healthcare industry [24]. 

Recent studies [18,19,25-27] on dermoscopic image classification have increasingly focused 

on using deep learning models, particularly with the ISIC-2019 dataset for multiclass 

classification tasks. The ISIC-2019 dataset is a public dataset that was curated by the 

International Skin Imaging Collaboration (ISIC) and released in 2019 for the purpose of 

facilitating research in the field. This dataset is extensively utilized in the domains of dermatology 

and artificial intelligence research, particularly for developing and evaluating algorithms related 

to the analysis of skin lesions, with a particular focus on pigmented skin lesions. These 

approaches aim to address challenges such as class imbalance, low contrast between skin lesions 

and surrounding areas, and the presence of artifacts. A study [28] proposed a deep convolutional 

neural network (CNN) model specifically designed for multiclass skin cancer classification using 

the ISIC-2019 dataset. Their model achieved significant performance, with an accuracy of 97.1%, 

and outperformed other transfer learning-based models like VGG16 and DenseNet. Alsahafi et al. 

[19] introduced Skin-Net, a deep residual network leveraging multilevel feature extraction and 

cross-channel correlation. Tested on both ISIC-2019 and ISIC-2020 datasets, their model 

effectively handled the challenge of dataset imbalance and achieved improved accuracy in 

multiclass classification. Another study proposed a Swin Transformer model for skin lesion 

classification, leveraging the strengths of both CNNs and transformers [18]. Using the ISIC-2019 

dataset, their method outperformed many traditional CNN models, achieving high sensitivity and 

specificity [18]. Cauvery et al. [26] implemented a transfer learning-based convolutional neural 

network model that classified dermoscopic images into multiple categories using the ISIC-2019 

dataset and their ensemble approach achieved a balanced accuracy of 81.2%. Another study also 

contributed to this area by using transfer learning with the GoogleNet architecture to classify 

eight skin lesion classes from the ISIC-2019 dataset [27]. The model achieved a classification 

accuracy of 94.92%, further demonstrating the efficiency of CNNs in multiclass skin lesion 

classification [27]. 

The Inception-V3 architecture is a highly advanced deep learning model that has 

demonstrated its ability to identify critical features of dermoscopic images [29,30]. However, 

there is still a room for improvement, particularly in adding specific model methods to specialized 

datasets. The aim of this study was to explore and enhance the efficacy of the Inception-V3 

architecture for classifying PSLs through dermoscopy. The research aimed to adapt the Inception-

V3 model using techniques such as augmentation, transfer learning, fine-tuning, and specific 

methods to align it with the unique nuances of dermoscopic images of skin lesions. 

This study utilized the Inception-V3 model with the ISIC-2019 dataset to classify PSLs. The 

key achievement of this study was the development of an improved model that enhanced the 

accuracy of classification tasks. This study makes several key contributions: (a) introduced a 

simplified soft-attention mechanism that significantly enhances the model’s focus on relevant 

lesion features, improving both interpretability and classification accuracy; and (b) integrated 

Bayesian hyperparameter tuning optimizes the model performance with reduced computational 

complexity, leading to superior results compared to existing methods. 

While data augmentation, Bayesian tuning, and attention mechanisms have been explored 

in other machine-learning fields, the innovation of this study lies in how these techniques were 

uniquely applied and optimized for dermoscopic image analysis in the context of skin lesion 
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classification. Specifically, our approach integrated a simplified soft-attention mechanism that 

enhanced the model’s ability to focus on lesion-relevant features without significantly increasing 

computational complexity. This simplification improved both classification accuracy and 

interpretability, which is crucial in a clinical setting where transparent decision-making is 

important. Additionally, our application of Bayesian hyperparameter tuning was tailored to 

balance the specific challenges of dermoscopic image datasets, such as class imbalance and 

feature variability. This combination of techniques, though not entirely new in isolation, 

represents a novel and effective solution when applied in unison to the specific problem of skin 

lesion classification, providing superior results over existing methodologies. 

Methods 

Dataset and data preprocessing 

The ISIC-2019 dataset [31-33] was chosen for this study due to its large number of lesion images 

and classes. Dermoscopy images in eight disease classes, along with metadata, were included 

(Table 1). However, it should be noted that the dataset is imbalanced, with almost half of the 

images being melanocytic nevus. 

The data preprocessing stage of the study was comprised of three primary steps. First, 

duplicate images were detected based on the metadata of each image in the dataset. Second, the 

data was cleaned to ensure that each image had a lesion identity document (ID) in its metadata. 

Third, the images were resized to meet the input requirements of the model. Detection of 

duplicates is important for maintaining dataset diversity and preventing data leakage that could 

artificially inflate model performance. Data cleaning ensures that the dataset is properly labeled 

and structured for training while resizing standardized all images to a uniform size, aligning with 

the model's input dimensions and improving computational efficiency during training and 

inference. We also created a testing data subset by selecting 100 images from each class, resulting 

in a total of 800 images for testing. The testing data subset did not overlap with the training or 

validation data subsets. The training set used the remaining data and was augmented to increase 

the data volume and achieve balance among different disease classes. 

During the augmentation phase, we used the Image Data Generator, a utility provided by 

deep learning libraries, to perform real-time data augmentation during training. This involved 

applying specific parameters to enhance the diversity and variability of the training dataset. These 

parameters included rotations up to 180 degrees, shifts in height and width by 10% (0.1), zoom 

modifications of 10%, and flips both horizontally and vertically. Brightness levels were also 

modified to range from 90% to 110% of the original image brightness. For images necessitating 

fill due to the applied transformations, we opted for the ’nearest’ fill mode. The augmentation 

process utilized a batch size of 20 to generate a total of 9200 images to align with the largest 

image count observed in the melanocytic nevus category. Details of this preprocessing and 

augmentation method are presented in Table 1. 

Table 1. Processing, cleaning, division, and enhancement of the International Skin Imaging 

Collaboration (ISIC) 2019 dataset 

Disease classes Baseline 
data 

No having 
an ID 

Testing 
subset 

Learning 
subset 

Augmented 
training 
subset 

(1) Melanocytic nevus (NV) 12,875 3,647 100 9,128 9,128 
(2) Melanoma (MEL) 4,522 495 100 3,927 9,204 
(3) Basal cell carcinoma (BCC) 3,323 138 100 3,085 9,220 
(4) Benign keratosis (BKL) 2,624 436 100 2,088 9,202 
(5) Actinic keratosis (AK) 867 36 100 731 9,060 
(6) Squamous cell carcinoma (SCC) 628 24 100 504 8,606 
(7) Dermatofibroma (DF) 239 11 100 128 8,436 
(8) Vascular lesion (VASC) 253 39 100 114 7,918 
Total 25,331 4,826 800 19,705 70,774 

 

We could express the process mathematically to better understand how image augmentation 

impacted the dataset. Let 𝑁𝑖 represent the number of original images in class 𝑖, and 𝑀𝑖 the total 
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number of augmented images after the augmentation process. The goal of augmentation was to 

synthetically expand the dataset by employing random transformations such as rotation, shifting, 

zooming, and flipping, which we denoted as transformation operators 𝑇𝑘, where 𝑘=1, 2, ..., 𝐾. 

Each original image 𝑥𝑖 undergoes these transformations, creating new augmented images 

𝑥i(𝑎𝑢𝑔), which can be modeled as: 𝑥i(𝑎𝑢𝑔)=𝑇𝑘(𝑇𝑗(...𝑇1(𝑥𝑖)...)) (1) where the transformation 

parameters (e.g., angles for rotation or scaling factors for zooming) were randomly selected from 

predefined ranges.  

The final count of augmented images for a given class is determined by the target value, M. 

If a class contains N original images and the augmentation generator produced images in batches 

of size B, the total number of augmented images, M, is obtained by repeatedly generating batches 

until the target M is met: 𝑀 = 𝑁 +  ∑ 𝐵𝑗
𝐼
𝑗=1  (2) where 𝐵𝑗 was the batch size at the 𝑗-th iteration, 

and 𝐼 was the total number of iterations. 

The total number of augmented images 𝑀𝑖 for each class was determined by a target value, 

aiming to achieve class balance in the dataset. For example, in the present study, the target 

number of images per class was set to approximately 9200, except for the class melanocytic nevus 

where no augmentation was performed. The final number of augmented images did not always 

represent an integer multiple of the original dataset size due to the stochastic (random) nature of 

the augmentation process and the batch-wise way augmentation was applied. 

This discrepancy arose due to the augmentation process that did not strictly adhere to 

integer multiples but rather aimed to meet the desired target number through iterative batch 

processing. Each original image underwent transformations based on random parameters, 

resulting in variability in the number of images generated. By modeling the augmentation process 

in this way, we provided a structured understanding of how the variability in image count arose 

from the augmentations, helping future researchers appreciate the underlying mechanics in 

medical imaging datasets. 

Model architecture 

The Inception-V3 [34] architecture was a significant advancement in the field of deep learning, 

particularly in the area of image recognition and classification. It is the third iteration of the 

Inception architecture, first introduced by Google. Key aspects of Inception-V3 include complex 

architecture: Inception-V3 is known for its complex architecture, which is a deeper and wider 

version of the original Inception model. It contains numerous ’Inception modules’ that allow it to 

efficiently process information at various scales and complexities. Improved performance: this 

model improved upon its predecessors in terms of accuracy and efficiency, particularly in large-

scale image recognition tasks.  

It achieved higher accuracy with lower computational cost compared to earlier versions. 

Factorization into smaller convolutions: Inception-V3 breaks down larger convolutions into 

smaller, more manageable operations. For example, a 5×5 convolution can be broken down into 

two 3×3 convolutions. This reduces the number of parameters, helping in controlling overfitting 

and reducing computational requirements. Grid size reduction: Inception-V3 introduces an 

efficient grid size reduction technique that avoids a representational bottleneck. This capacity was 

reached by not using pooling to reduce grid size but instead using convolution with a stride. Batch 

normalization: the design heavily incorporates batch normalization, a procedure that normalizes 

the input to a layer by adapting and scaling its activations. This approach accelerated the training 

process and offers a degree of regularization, diminishing the necessity for dropout. Applications: 

Inception-V3 has been widely used for image classification, object detection, and facial 

recognition tasks. Its efficiency made it suitable for both academic research and real-world 

applications, including those running on devices with limited computational resources. 

Inception-V3 represented a significant step in the evolution of CNNs, offering a balance 

between computational effectiveness and model performance, and has been a base for further 

innovations in the field. The primary consideration for utilizing the Inception-V3 architecture in 

this research stems from its superior performance in PSL classification [29,30]. This model 

outperforms other architectures in accurately classifying PSLs, making it the optimal choice for 

this study. 
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Model optimization 

The optimization process combined Bayesian tuning for hyperparameter optimization with the 

integration of an attention module. This combination enhanced the model's ability to focus on 

critical features while systematically identifying the best parameter settings to maximize 

performance. This dual approach ensures both efficiency and accuracy in model training. 

Bayesian tuning 

Bayesian optimization was a probabilistic model-based optimization method aimed at finding the 

optimal hyperparameter set 𝜃∗ that maximizes or minimizes an objective function 𝑓(𝜃), in this 

case, the validation accuracy. Given a dataset D, the model learns the function f(𝜃), where 𝜃 

represents the hyperparameters (e.g., learning rate, dropout rate). 

Bayesian optimization constructed a surrogate model 𝑀(𝜃) over the objective function and 

uses an acquisition function 𝑎(𝜃|𝑀) to decide the next hyperparameter point to evaluate. The 

surrogate model 𝑀(𝜃) is modeled as a Gaussian process (GP): 𝑀(𝜃) ∼ GP (𝜇(𝜃), 𝑘 (𝜃, 𝜃′)) (3) where 

𝜇(𝜃) is the mean function, and 𝑘 (𝜃, 𝜃′) is the covariance (kernel) function. The acquisition 

function 𝑎(𝜃|𝑀) balances exploration (probing new regions of the hyperparameter space) and 

exploitation (focusing on areas with known good results). A common acquisition function is the 

Expected Improvement (EI): 𝐸𝐼(𝜃) = 𝔼 (max (0, 𝑓 (𝜃) − 𝑓 (𝜃+))) (4) where 𝑓 (𝜃+) is the best-

observed value of the objective function. The next hyperparameter set 𝜃𝑛+1 is chosen by 

maximizing the Expected Improvement. 

Algorithm 1 Bayesian tuning (𝐷, 𝑝, 𝐸init, 𝑛, 𝐸stop, 𝑇): (a) Select a subset of the dataset, 𝐷subset, 

by sampling from 𝐷 with a proportion 𝑝. (b) Split 𝐷subset into training data (𝐷train) and validation 

data (𝐷val). (c) Define the search space for the hyperparameters 𝜃. (d) Set up the objective function 

𝑓(𝜃) based on validation accuracy. (e) Initialize the number of epochs 𝐸 to 𝐸init and the iteration 

counter 𝑇 to 0. (f) While 𝑇 is less than 𝑛, perform the following steps: Train the model using the 

hyperparameters 𝜃 for 𝐸 epochs. Apply early stopping if required. Optimize the hyperparameters 

𝜃 through Bayesian optimization. Update 𝐸opt to reflect the highest validation accuracy obtained 

so far. Increase the iteration counter 𝑇 by 1. (g) Upon completing all iterations, train the model 

using the best hyperparameters 𝜃∗ for 𝐸opt epochs. (h) Keep the trained model with the optimal 

hyperparameters 𝜃∗. 

The present study carried out hyper-parameter fine-tuning through Bayesian optimization 

to identify the best parameter settings. The process explored hyperparameters such as the 

learning rate (ranging between 1×10-6 and 1×10-2), dropout rate (ranging from 0.1 to 0.5), and 

optimizer (fixed to adaptive moment estimation (ADAM)). The document described this 

optimization process in Algorithm 1, requiring inputs like the dataset D, a subset percentage p, 

the initial epoch count Einit, trial number n, and the epoch at which to stop Estop. For Bayesian 

optimization, the research utilized 25% of the expanded dataset for training, sets the amount of 

testing to 5, and targets validation accuracy as the performance metric. The outcome of this 

optimization yielded optimal settings, including a dropout rate of 0.3, a learning rate of 0.0001, 

and the selection of ADAM for optimization. 

The purpose of Bayesian tuning in modeling was to optimize model parameters using a 

Bayesian probabilistic approach. Its main objectives included enhancing model performance, 

mitigating overfitting or underfitting, optimizing parameters efficiently, improving 

computational efficiency, and adapting to specific data characteristics. By systematically 

exploring parameter space, Bayesian tuning aimed to find the best-performing parameter 

combinations while considering trade-offs and adapting to data intricacies. 

Attention module 

The attention module, also known as the attention layer, consisted of a series of layers that 

implemented the attention mechanism to focus on influential features within a feature map. 

Attention mechanisms allowed the model to appoint varying degrees of importance to different 

parts of the input, enabling it to selectively attend to the most relevant features or elements. By 

incorporating attention layers, a model can better capture long-range dependencies, improve its 

understanding of context, and enhance performance in tasks such as machine translation, text 

summarization, image captioning, and sequence prediction. Ultimately, attention layers 
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contributed to the model’s interpretability, robustness, and overall effectiveness in processing 

sequential or set-based data. 

The attention mechanism used in this study is a simplified soft-attention module designed 

to focus on the most relevant features in dermoscopic images. The attention mechanism assigns 

a weight 𝛼𝑖 to each feature 𝑖 of the input, computed as follows: 𝛼𝑖 =
exp(𝑒𝑖)

∑ exp(𝑒𝑗)𝑇
𝑗=1

 (5) where 𝑒𝑖 is the 

importance score for feature 𝑖, and 𝛼𝑖 is the attention weight. The importance score 𝑒𝑖 is typically 

computed through learned compatibility functions. 

To maintain simplicity in the model, we have introduced a novel and simplified spatial 

attention mechanism consisting of a Conv2D layer, Global Average Pooling, and a Density layer, 

as shown in Algorithm 2 and Table 2. This attention module is a simplification of spatial 

attention introduced by Woo et al. [35]. We modulated the feature map output from the base 

model using a convolutional and dense layer-based approach. Let 𝐹 ∈ ℝ𝐻×𝑊×𝐶 represent the 

feature map from the base model, where 𝐻 and 𝑊 are the spatial dimensions, and 𝐶 is the number 

of channels. The attention mechanism is defined as follows: Apply a 1×1 convolution to the feature 

map: 𝐹 ′= Conv1×1(𝐹) (6). Perform global average pooling on 𝐹 ′ to obtain a vector 𝑣 ∈ ℝ𝐶:  𝑣 =

 
1

𝐻×𝑊
∑ ∑ 𝐹𝑖𝑗

′𝑊
𝑗=1

𝐻
𝑖=1  (7). Pass 𝑣 through two fully connected (dense) layers: 𝑑1 = ReLU (𝑊1𝑣+𝑏1) (8) 

𝑑2=Sigmoid (𝑊2𝑑1+𝑏2) (9) where 𝑊1 ∈ ℝ𝐶×256, 𝑊2 ∈ ℝ256×𝐶, and 𝑏1, 𝑏2 are bias terms. The 

output from the second dense layer 𝑑2 produces the attention weights𝛼 ∈ ℝ𝐶, which are 

multiplied elementwise with the original feature map 𝐹: 𝐹𝑎𝑡𝑡 = 𝐹 ⊙ 𝛼 (11) where ⊙ denotes 

element-wise multiplication. 

Table 2. Simplified spatial attention layer structure 

Step Layer Number of units/ filters Activation Output dimensions 
1 1×1 convolution 2048 ReLU H×W×2048 
2 Global average pooling - - 1×1×2048 
3 Reshape - - 1×1×2048 
4 Dense 1 256 ReLU 1×1×256 
5 Dense 2 2048 Sigmoid 1×1×2048 

 

Algorithm 2 simplified spatial attention with some steps. The simplified spatial attention 

algorithm started by adding an attention mechanism to the base model. This step involved 

extracting the base model’s output, performing a 1×1 convolution operation with 2048 filters and 

ReLU activation, applying global average pooling to the convolution result, reshaping the pooled 

output into a 1×1×2048 format, passing it through a dense layer with 256 units and ReLU 

activation, and finally adding another dense layer with 2048 units and sigmoid activation. The 

attention mechanism was then incorporated into the base model by applying it to the base model’s 

output, reducing its dimension using global pooling, passing it through a dense layer with 1024 

units and ReLU activation, and adding a SoftMax layer for predictions. The complete model was 

constructed by using the base model's input as the starting point and combining it with the output 

of the prediction layer to form the final model. 

The simplified soft-attention mechanism used in the present study was designed to address 

the limitations of traditional attention mechanisms by focusing on computational efficiency and 

interpretability. Unlike traditional models that compute attention weights across all input 

regions, our approach emphasized channel-wise importance using a streamlined structure. This 

involved a 1×1 convolutional layer, global average pooling, and two dense layers to generate 

attention weights. By avoiding the complexity of multi-head or spatial attention, this mechanism 

reduced computational overhead while maintaining the ability to focus on key features relevant 

to dermoscopic image analysis. 

This simplified design was particularly suited for dermoscopic images, which required 

highlighting critical patterns like pigmentation, texture, and lesion borders. The mechanism 

enhanced interpretability by clearly identifying focused regions, a critical feature in clinical 

applications. Additionally, its efficiency and simplicity mitigate overfitting risks, especially in 

imbalanced datasets like ISIC-2019, ensuring robust performance without excessive 

computational demands. This balance of precision, efficiency, and interpretability made the 

mechanism highly effective for medical image classification tasks. 
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In the present study, the primary innovation lied in the integration of a simplified soft-

attention mechanism with the Inception-V3 architecture, designed specifically for enhancing the 

classification of pigmented skin lesions. Unlike traditional attention mechanisms, which tend to 

increase model complexity, our approach introduced a novel, streamlined mechanism that 

focuses the model’s attention on the most relevant lesion features without adding significant 

computational overhead. This simplicity not only improved the model’s interpretability but also 

reduced the risk of overfitting, particularly on smaller or imbalanced datasets like ISIC-2019. 

Moreover, by refining the attention mechanism to focus on spatially significant areas of 

dermoscopic images, the model can better isolate critical features for lesion classification. This 

enhancement contributes to improved diagnostic performance, as reflected in the high sensitivity, 

specificity, and accuracy metrics achieved. Our method not only outperforms traditional 

attention-based models but also demonstrates that such improvements can be made without 

extensive computational costs, making this approach accessible for real-time medical diagnostics. 

In addition to the attention mechanism, our use of Bayesian optimization to fine-tune 

hyperparameters and advanced data augmentation techniques further enhances the model’s 

performance. These innovations collectively provide a substantial advancement in medical image 

analysis, offering a more interpretable and efficient solution for pigmented skin lesion 

classification compared to existing methodologies. 

Experiment scenarios 

The comprehensive workflow employed in the experiment for classifying pigmented skin lesions 

from the ISIC-2019 dataset is depicted in Figure 1. The process began with the data pre-

processing stage, which involved steps such as identical detection, data cleaning, and image 

resizing. After pre-processing, the data is augmented, balanced, and split using 5-fold cross-

validation to ensure consistent model performance during training.  

 

Figure 1. Experimental workflow for pigmented skin lesion classification. 
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The prepared data was then input into the fine-tuned Inception-V3 architecture, pre-trained 

on ImageNet and optimized using Bayesian tuning. To enhance feature learning, an attention 

module is integrated, followed by a dropout layer to mitigate overfitting. Ultimately, the model 

outputs classifications into one of eight disease categories. The initial model parameters included 

the ADAM optimization algorithm, a learning rate of 0.1, a dropout rate of 0.1, a batch size of 20, 

and 50 epochs. This model's performance serves as the baseline for subsequent evaluations. 

The experiments were conducted on a high-performance workstation equipped with an Intel 

Core i9-10900K processor (10 cores, 20 threads, base clock speed of 3.7 GHz, and boost clock up 

to 5.3 GHz), 128 GB of DDR4 RAM (3200 MHz), and an NVIDIA GeForce RTX 3080 GPU with 

11 GB of GDDR6X memory. This configuration provided robust computational power for the 

training and evaluation of deep learning models. The workstation operated on Ubuntu 18.04 LTS, 

a Linux distribution known for its stability in machine learning and scientific research tasks. 

The software environment included JupyterHub for experiment management and 

interactive development, Python 3.8.10 as the primary programming language, and essential 

deep learning libraries such as TensorFlow 2.6 and PyTorch 1.10. CUDA Toolkit 11.3 and cuDNN 

8.2 were installed to optimize GPU computations. Additionally, package management was 

handled through Conda 4.10.3 to ensure a reproducible environment. For data preprocessing and 

analysis, libraries like NumPy 1.21.0, Pandas 1.3.0, and Matplotlib 3.4.3 were utilized. 

Four testing scenarios were implemented: (1) Using the model without incorporating 

augmented data. (2) Implementing the model with data augmentation applied. (3) Deploying the 

model with both data augmentation and Bayesian hyperparameter optimization. (4) Running the 

model with augmented data, Bayesian hyperparameter optimization, and the addition of an 

attention mechanism. 

The Inception-V3 architecture contains approximately 23 million parameters, and each 

forward pass requires 5 billion FLOPs, which can increase inference time. However, the inclusion 

of Bayesian optimization and attention mechanisms reduced overfitting and improved the 

model’s performance, making the slight increase in complexity justifiable. 

Evaluation 

Evaluating a learning algorithm with test data is crucial to assess its effectiveness. The assessment 

starts with the confusion matrix, a key tool for analyzing performance. Essential metrics for 

classification tasks, including sensitivity (SEN), specificity (SPE), accuracy (ACC), precision 

(PREC), and the area under the curve (AUC), play a vital role in measuring the algorithm's ability 

to differentiate between classes. These metrics deliver valuable insights into the precision and 

reliability of the algorithm. 

Results 
Deep learning, specifically CNNs, has demonstrated impressive capabilities in image 

classification. In this study, we utilized the Inception-V3 pre-trained model to classify images into 

eight distinct categories using the ISIC-2019 dataset. We implemented several stages of treatment 

to enhance the performance of our model. 

Training models 

Model training was a crucial stage in which the model was introduced to feature variations in each 

class, enabling it to generalize to new images. The success of the model was highly dependent on 

this stage. Four-line graphs representing the training and validation accuracy of an Inception-V3 

model under four different conditions (Figure 2): without augmentation, with augmentation, 

with augmentation and Bayesian tuning and with augmentation, Bayesian tuning and attention 

module. With augmentation, Bayesian tuning and attention module had the best performance 

among the four scenarios (Figure 2). The validation accuracy was not only stable but also closer 

to the training accuracy, suggesting a well-generalizing model. 

Each step taken to enhance the model’s training process contributed to a more robust and 

generalizable model, as indicated in Figure 2. The augmentation added variability to the training 

data, the Bayesian tuning optimized hyperparameters, and the attention mechanism allowed the 

model to focus on the most informative parts of the input data, which together achieved better 
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performance. In the first scenario, where no data augmentation was used, the model’s 

performance was inconsistent. It excelled at recognizing some classes (like melanocytic nevus, 

which stood for a particular data type, identified correctly 100% of the time), but it struggled with 

others, often confusing one class for another (like dermatofibroma and vascular lesion, which 

were other data types). When data augmentation was introduced in the second scenario, which 

meant the model was trained with a more diverse set of data, there was a noticeable improvement. 

This technique helped the model not to be fooled by minor variations in the data, leading to better 

recognition across most classes. It wasn’t perfect, but it was a step up from the first scenario.  

 

Figure 2. Performance training and validation accuracy of Inception-V3 with four different 
conditions. (A) Without augmentation, the graph showed very high training accuracy that quickly 
reaches nearly 100% and remains stable. However, the validation accuracy was volatile, 
suggesting the model may be overfitting due to the lack of input data variability. (B) With 
augmentation, the introduction of data augmentation improved the stability of the validation 
accuracy, reducing overfitting. There’s still a gap between training and validation accuracy, but 
it’s less pronounced. (C) With augmentation and Bayesian tuning, the addition of Bayesian 
hyperparameter tuning along with data augmentation showed an even more stable validation 
accuracy with less fluctuation, and the gap between training and validation accuracy is further 
narrowed. (D) With augmentation, Bayesian tuning and attention module indicates the best 
performance among the four scenarios. The validation accuracy was not only stable but also closer 
to the training accuracy, suggesting a well-generalizing model. 

The third scenario added Bayesian tuning on the top of data augmentation (Figure 2). 

Bayesian tuning was a statistical method that helped the model make better decisions by 

considering the certainty of its predictions. This led to a significant jump in accuracy, with the 

model now perfectly identifying several classes (like actinic keratosis, dermatofibroma, 
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melanocytic nevus, and vascular lesion) that it previously had trouble with. Finally, the fourth 

scenario built on all the previous improvements and added an attention mechanism (Figure 2). 

This mechanism allowed the model to ‘focus’ on the most important parts of the data when 

deciding. It was like giving the model a way to zoom in on what mattered most, which resulted in 

the highest accuracy levels across all classes. In summary, each step of enhancement—data 

augmentation, Bayesian tuning, and the attention mechanism—brought the model closer to 

perfect performance. By the end of this progression, the model made very few mistakes, 

demonstrating that these techniques were quite powerful in teaching AI to correctly classify 

complex data. 

Testing models 

Upon completion of the model training phase, subsequent validation was performed utilizing a 

designated dataset for testing purposes. This dataset was curated by selecting images from the 

onset of each category at intervals of 100 images. Evaluation metrics, containing sensitivity, 

specificity, precision, accuracy, F1 Score, and AUC, are computed for each model based on the 

information extracted from the confusion matrix, facilitating a complete assessment of model 

performance. The confusion matrices of pre-trained Inception-V3 for PSL classification with four 

scenarios are presented in Figure 3.  

 

Figure 3. Confusion matrix of Inception-V3: (A) without data augmentation, (B) with data 
augmentation, (C) with data augmentation and Bayesian tuning, and (D) with data augmentation, 
Bayesian tuning and attention module. 

Without data augmentation, the model exhibited significant misclassification across several 

classes, reflecting suboptimal precision and recall (Figure 3A). The inclusion of data 

augmentation markedly enhanced performance, reducing misclassification, particularly in 

classes such as actinic keratosis, squamous cell carcinoma and vascular lesion (Figure 3B). 

Further refinement using Bayesian hyperparameter tuning resulted in near-perfect classification 

for most classes, with several, such as dermatofibroma, melanocytic nevus, squamous cell 

carcinoma and vascular lesion, achieving 100% accuracy (Figure 3C). Finally, the addition of an 

attention module achieved the highest overall performance, with nearly flawless classification 

across all classes (Figure 3D). These results highlighted the effectiveness of integrating data 

A 

C 

B 

D 
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augmentation, Bayesian tuning, and attention mechanisms in improving the model’s precision, 

recall, and robustness. 

The results of the performance matrix calculation for each scenario are presented in 

Table 3. Our data indicated that the pre-trained Inception-V3 model’s performance significantly 

improved across all evaluation metrics—sensitivity, specificity, precision, accuracy, F1 score, and 

AUC—when data augmentation techniques, Bayesian tuning, and the attention mechanism were 

applied.  

Table 3. Performance comparison of pre-trained Inception-V3 across four different scenarios 

Model scenarios SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

ACC 
(%) 

F1 score 
(%) 

AUC 

Without augmentation 55.50 90.40 65.06 55.50 54.10 0.500 
With augmentation 88.63 98.23 88.53 88.63 88.53 0.940 
With augmentation and Bayesian tuning 96.38 99.47 96.40 96.38 96.29 0.979 
With augmentation, Bayesian tuning and 
attention module 

98.50 99.62 97.42 97.38 97.34 0.985 

ACC: accuracy; AUC: area under the curve; PRE: precision; SEN: sensitivity; SPE: specificity 

 

Initially, without augmentation, the model struggled to identify true positive cases, as 

evidenced by low sensitivity (55.50%) and accuracy (55.50%), indicating poor differentiation 

capabilities in varied or imbalanced data conditions. While the model showed relative strength in 

identifying true negatives (specificity at 90.40%), this also suggested a possible bias towards the 

majority class. Low precision (65.06%) and F1 score (54.10%), alongside an AUC of 0.500, 

indicated a lack of predictive accuracy and discriminative power, essentially no better than 

random guessing. The introduction of data augmentation marked a substantial improvement 

across all metrics, particularly in sensitivity and accuracy (both at 88.63%), demonstrating the 

significant benefits of augmenting data to enhance model generalization. This was further 

enhanced by Bayesian tuning, which optimized hyperparameters, resulting in even higher 

performance in sensitivity (96.38%), accuracy (96.38%), and a remarkable AUC of 0.979, 

reflecting excellent classification and discriminative abilities. The final implementation of the 

attention mechanism elevated performance to new heights, with sensitivity reaching 98.50% and 

accuracy at 97.38%, underscoring the model’s improved ability to recognize positive cases and its 

overall high accuracy. Exceptionally high specificity (99.62%), precision (97.42%), F1 score 

(97.34%), and an AUC of 0.985 demonstrated outstanding model performance, with superb 

capability in distinguishing between different classes. In conclusion, the progression from no data 

augmentation to the incorporation of data augmentation techniques, Bayesian tuning, and the 

attention mechanism significantly enhanced every aspect of performance. This underscored the 

importance of data augmentation in enhancing data variability and representation, 

hyperparameter tuning for model optimization, and the attention mechanism for focusing on 

important features—collectively boosting accuracy, sensitivity, specificity, and the discriminative 

ability of the model. 

The training time required by the model across various scenarios is summarized in Table 4. 

First, the significant reduction in training time from 427 minutes to 178 minutes when data 

augmentation was applied suggested the effectiveness of augmentation in enhancing model 

training efficiency. Data augmentation improved the diversity of the training dataset through 

transformations like rotation, scaling, and flipping. This approach helped prevent overfitting, 

promoted faster convergence, and improved the model's ability to generalize effectively. The 

introduction of Bayesian tuning further reduced the training time to 98 minutes, indicating the 

efficiency of this optimization technique in fine-tuning hyperparameters. Bayesian optimization 

searched for the optimal set of hyperparameters more systematically and efficiently than random 

or grid search, by building a probabilistic model of the function mapping hyperparameter values 

to the objective evaluated on a validation set. This method allowed for a more directed search for 

the optimal hyperparameters, resulting in faster convergence and reduced training time. 

Incorporating an attention mechanism into the model, alongside data augmentation and 

Bayesian tuning, extended the training time slightly to 125 minutes, reflecting the additional 

computational effort required to focus on the most relevant features of the data input. This 
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increase was due to the added computational complexity introduced by the attention mechanism. 

However, the attention mechanism enhanced model performance by enabling a focus on the most 

relevant features in the input data. Consequently, the trade-off between the marginally longer 

training time and the potential gained in accuracy and performance was justified. 

Table 4. Duration of model training periods 

Training scenarios Duration (min) 
Without augmentation 427 
With augmentation 178 
With augmentation and Bayesian tuning 98 
With augmentation, Bayesian tuning and attention module 125 

Discussion 
The ISIC-2019 dataset that was utilized in the present study is one of the most comprehensive 

public datasets for dermoscopic images, featuring eight distinct classes of pigmented skin lesions. 

While its large size and detailed annotations make it a valuable resource for machine learning 

research, several limitations and biases could affect the generalizability of the results. First, the 

dataset was heavily imbalanced, with certain classes, such as melanocytic nevus, constituting 

nearly half of the total images. This imbalance could lead models to overfit on majority classes, 

even with techniques like data augmentation and weighted loss functions. Second, the dataset 

may not fully represent the diversity of real-world skin lesion characteristics, such as variations 

in skin type, lesion morphology, and imaging conditions. Most images were derived from 

controlled clinical environments, which may not reflect the heterogeneity of data encountered in 

non-clinical or resource-limited settings. These factors could potentially limit the applicability of 

the model to broader populations. Additionally, artifacts such as hair, ruler markings, or uneven 

illumination present in some images might inadvertently introduce noise, impacting model 

performance. Addressing these biases through strategies like domain adaptation or additional 

real-world data collection is essential to ensure robust and generalizable applications in clinical 

practice. 

In terms of model complexity and performance trade-offs, the enhancements we made to the 

Inception-V3 architecture, including data augmentation, Bayesian hyperparameter tuning, and 

the introduction of a simplified attention mechanism, inevitably resulted in a slight increase in 

computational complexity. Specifically, the attention mechanism, while improving 

interpretability and focusing on relevant features, adds an additional layer of computation. This 

marginal increase in inference time, as evidenced by the slight rise in training duration from 98 

minutes (with Bayesian tuning) to 125 minutes (with attention), is a necessary trade-off for the 

substantial improvements in classification accuracy and robustness. The overall computational 

requirements were still manageable, particularly when considering the high performance 

achieved—exemplified by a sensitivity of 98.5% and an AUC of 0.99—making this approach 

suitable for real-time applications. However, in resource-constrained environments, further 

optimization techniques could be explored to mitigate the impact on inference time without 

compromising model accuracy. 

The improved classification accuracy achieved by our model has significant clinical 

implications for dermatological practice. With high sensitivity and specificity, the model 

enhanced the early detection of malignant lesions like melanoma, enabling timely intervention 

and reducing mortality rates. Its ability to minimize false positives can reduce unnecessary 

biopsies, optimizing clinical resources and improving patient experiences. Moreover, this model 

can support practitioners in resource-limited settings or integrate into telemedicine platforms to 

provide accessible dermatological care.  

 The inclusion of interpretable features also fostered trust and facilitates its adoption in 

routine workflows, ultimately contributing to better patient outcomes and more efficient 

dermatological practices. In summary, the analysis of the training times for the pre-trained 

Inception-V3 model across different scenarios highlighted the effectiveness of data augmentation 

and Bayesian tuning in improving training efficiency. While the addition of an attention module 

slightly increases training time, it offered potential benefits in enhancing model performance. 
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These insights could guide researchers and practitioners in optimizing their deep-learning 

models for both efficiency and effectiveness. 

A comprehensive comparison of our modified Inception-V3 model's performance against 

prior studies on the classification of PSLs is provided in Table 5. The values in bold represent 

the highest achieved figures in each performance metric. Our evaluation is based on the ISIC-

2019 dataset, encompassing eight classes of skin lesions. Our modified Inception-V3 model 

achieved the highest performance metrics across the board compared to other models. This 

included the highest sensitivity at 98.50%, specificity at 99.62%, precision at 97.42%, accuracy at 

97.38%, F1 score at 97.34%, and AUC at 0.99. These results highlighted the effectiveness of our 

modifications in enhancing the model’s diagnostic accuracy. 

Specificity and sensitivity are critical for medical diagnosis to minimize false positives and 

false negatives. Our model’s specificity (99.62%) and sensitivity (98.50%) outperform all other 

models, indicating a balanced and reliable performance in distinguishing between different types 

of pigmented skin lesions. Given the high-performance metrics, our modified Inception-V3 

model was particularly well-suited for clinical applications where accuracy is paramount. Its 

ability to maintain high precision and sensitivity can aid dermatologists in making more accurate 

diagnoses, potentially leading to better patient outcomes. 

Table 5. Performance evaluation against prior studies. Values in bold represent the highest 

achieved figures 

Study Year Model Performance metrics 
SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

ACC 
(%) 

F1 score 
(%) 

AUC 

[36] 2020 DenseNet-201 66.45 97.85 91.61 97.35 - - 
[27] 2020 GoogleNet 79.80 97.00 80.36 94.92 80.07 - 
[26] 2021 Ensemble CNN 62.00 98.00 73.00 81.00 56.00 - 
[37] 2023 Clinical Inspired 53.80 97.40 - 64.00 - 0.91 
[17] 2023 CLCM-net 84.80 - 85.30 91.73 85.05 - 
[18] 2023 Swin transformer 82.30 97.90 - 97.20 - - 
[19] 2023 Skin-net 70.78 96.78 72.56 94.65 71.33 - 
[28] 2024 DCNN 97.12 99.61 97.09 97.11 97.08 0.99 
Ours 2024 Modified Inception-V3 98.50 99.62 97.42 97.38 97.34 0.99 

ACC: accuracy; AUC: area under the curve; CLCM: consecutive layerwise weight constraint MaxNorm 
model; CNN: convolutional neural network; DCNN: deep convolutional neural network; PRE: precision; 
SEN: sensitivity; SPE: specificity 
 

The consistently high scores across multiple metrics for our modified Inception-V3 

suggested that the enhancements that were made to the base model have effectively improved its 

robustness and generalizability for the classification task. This included better handling of the 

complexities and variations in the ISIC-2019 dataset. This superiority is attributed to several key 

innovations integrated into our approach. First, the introduction of a simplified soft-attention 

mechanism enhanced the model’s capability to focus on spatially significant features within 

dermoscopic images, enabling better identification of critical lesion characteristics. Unlike 

traditional attention mechanisms, our simplified design maintained computational efficiency 

while improving model interpretability—an essential factor for clinical applicability. Second, the 

application of Bayesian hyperparameter optimization ensured that the model parameters were 

finely tuned to the specific challenges posed by the ISIC-2019 dataset, such as class imbalance 

and feature variability. This optimization led to a more robust and generalizable model 

performance, which was evidenced by its consistently high sensitivity (98.50%) and specificity 

(99.62%). Compared to previous methods like DCNN or Skin-Net, which primarily rely on deep 

convolutional layers, our approach effectively combined augmentation techniques and 

hyperparameter tuning to address dataset complexities. Moreover, the advanced data 

augmentation techniques employed in this study contribute significantly to the improved 

generalization of the model. By increasing the diversity and balance of training data, our model 

outperforms traditional architectures like DenseNet-201 and ensemble CNNs, which exhibited 

lower sensitivity and accuracy in handling complex multiclass classification tasks. Together, these 

innovations result in a notable leap in performance metrics, positioning our method as a leading 

approach in the classification of pigmented skin lesions. 
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Despite the promising results that were achieved by the Inception-V3-based model in 

classifying dermoscopic pigmented skin lesions, several limitations must be acknowledged. The 

first limitation is related to the dataset’s generalizability. The model was trained primarily on the 

ISIC-2019 dataset, which may not fully represent the diversity of real-world skin types, lesion 

variations, or imaging conditions. This dataset-specific nature could limit the model's 

performance when applied to more diverse populations or imaging setups. Another significant 

limitation is the issue of class imbalance. Although techniques such as weighted loss functions 

and data augmentation were employed, the dataset's inherent class imbalance may still impact 

the model's sensitivity, particularly for underrepresented lesion types. The model’s 

interpretability also presents constraints. While the integrated soft-attention mechanism 

provides insights into the model’s focus areas, more advanced interpretability tools are needed to 

further clarify the decision-making process for clinicians. Additionally, the model’s 

computational requirements pose challenges. Although the computational needs are optimized 

for performance, they may still create barriers in resource-constrained environments. Further 

work is necessary to improve efficiency without compromising accuracy. Lastly, deployment 

challenges must be considered. Variability in imaging devices and conditions could affect model 

consistency across different clinical environments, necessitating calibration for diverse 

dermoscopic equipment. Moreover, integrating the model into clinical workflows, such as 

electronic health record (EHR) systems, requires significant effort to ensure usability and 

adoption. Ethical and regulatory considerations, including data privacy and approval from 

governing bodies like the Food and Drug Administration (FDA) or European Conformity (EC) 

marking, must also be addressed before widespread deployment. 

Conclusion 
The present study demonstrated a notable enhancement in classification accuracy in comparison 

to the conventional pre-trained Inception-V3 model, exhibiting superior performance to other 

recent research endeavors within the domain of dermatology. The study employed a 

comprehensive evaluation of the Inception-V3 architecture for the classification of dermoscopic 

images of pigmented skin lesions, integrating techniques such as data augmentation, transfer 

learning, Bayesian optimization, and a soft attention mechanism. These enhancements resulted 

in a notable improvement in classification accuracy, thereby underscoring the pivotal role of 

sophisticated deep-learning techniques in medical image analysis. 

This study offers valuable insights into the application of machine learning in dermatology, 

contributing to advancements in the diagnosis and treatment of skin cancer. Furthermore, it 

paves the way for future research in skin cancer diagnostics. The findings not only underscore the 

effectiveness of the proposed approach in refining model performance but also highlight its 

potential to develop more accurate and reliable diagnostic tools for dermatologists, enabling early 

and precise detection of skin cancer. 
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