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Abstract 
The coronavirus disease 2019 (COVID-19) pandemic has triggered a global health crisis 

and placed unprecedented strain on healthcare systems, particularly in resource-limited 

settings where access to RT-PCR testing is often restricted. Alternative diagnostic 

strategies are therefore critical. Chest X-rays, when integrated with artificial intelligence 

(AI), offers a promising approach for COVID-19 detection. The aim of this study was to 

develop an AI-assisted diagnostic model that combines chest X-ray images and clinical 

data to generate a COVID-19 Risk Index (CORI) Score and to implement a deep learning 

model based on ResNet architecture. Between April 2020 and July 2021, a multicenter 

cohort study was conducted across three hospitals in Jakarta, Indonesia, involving 367 

participants categorized into three groups: 100 COVID-19 positive, 100 with non-COVID-

19 pneumonia, and 100 healthy individuals. Clinical parameters (e.g., fever, cough, oxygen 

saturation) and laboratory findings (e.g., D-dimer and C-reactive protein levels) were 

collected alongside chest X-ray images. Both the CORI Score and the ResNet model were 

trained using this integrated dataset. During internal validation, the ResNet model 

achieved 91% accuracy, 94% sensitivity, and 92% specificity. In external validation, it 

correctly identified 82 of 100 COVID-19 cases. The combined use of imaging, clinical, and 

laboratory data yielded an area under the ROC curve of 0.98 and a sensitivity exceeding 

95%. The CORI Score demonstrated strong diagnostic performance, with 96.6% accuracy, 

98% sensitivity, 95.4% specificity, a 99.5% negative predictive value, and a 91.1% positive 

predictive value. Despite limitations—including retrospective data collection, inter-

hospital variability, and limited external validation—the ResNet-based AI model and the 

CORI Score show substantial promise as diagnostic tools for COVID-19, with performance 

comparable to that of experienced thoracic radiologists in Indonesia. 

Keywords: COVID-19, diagnostic, scoring system, artificial intelligence, X-ray 

Introduction 

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), has highlighted significant global healthcare challenges. 
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Early and accurate diagnosis of COVID-19 is essential for effective management and mitigation 

of the disease's spread. The World Health Organization (WHO) has reported that limited 

diagnostic RT-PCR availability places significant strain on healthcare systems worldwide, 

highlighting the need for alternative diagnostic tools [1,2]. While RT-PCR remains the gold 

standard for COVID-19 diagnosis, its limited availability and delayed processing times, especially 

in remote regions, necessitate complementary diagnostic methods [3,4].  

The use of chest X-rays plays a pivotal role in identifying the severity of COVID-19, 

particularly for moderate to severe cases. Several studies have shown that chest X-rays could 

detect key COVID-19 imaging patterns, including consolidation (81.3%) [5], reticular interstitial 

thickening (39.9%) [6], ground-glass opacities (32.5%) [7], nodules (9.3%), and pleural effusion 

(7.5%) [8]. These abnormalities are typically seen in the lower zones of the lungs. Although CT 

scans have higher sensitivity (up to 97%) for detecting COVID-19-related lung abnormalities, 

chest X-rays remain a viable option for triage and monitoring due to their portability and cost-

effectiveness [4,9,10]. A study comparing these modalities demonstrated no significant difference 

in specificity, making chest X-rays particularly valuable in resource-limited settings [11]. 

Artificial intelligence (AI) has emerged as a transformative tool in medical diagnostics, 

enabling faster and more accurate disease detection [12]. AI models applied to chest X-rays have 

achieved diagnostic accuracy rates up to 96%, effectively distinguishing COVID-19 from non-

COVID pneumonia and normal cases [13-15]. For instance, Asnaoui et al. reported 92.18% 

accuracy using Inception-ResNetV2 to classify chest X-ray images into normal, bacterial 

pneumonia, and COVID-19 categories [16]. 

Despite these advancements, challenges persist. Many AI-driven models depend on 

imbalanced datasets, lack external validation, or fail to integrate multidimensional clinical and 

imaging data [14,17-19]. Common limitations include biases related to image acquisition 

protocols and the lack of generalizability across healthcare settings [18,19]. However, by 

combining AI with clinical and laboratory data, these challenges could be mitigated to improve 

diagnostic accuracy and applicability [17]. Therefore, the aim of this study was to address 

longstanding diagnostic challenges by introducing the CORI Score, a novel diagnostic scoring 

system that combines imaging analysis with clinical and laboratory data. Additionally, an AI-

based ResNet application was designed to support the evaluation and highlight the diagnostic 

potential of automated image interpretation. By leveraging machine learning models like ResNet, 

this study sought to advance current diagnostic methodology and provide a scalable solution for 

healthcare system in low-resource settings. Limitations in prior studies, such as the lack of 

external validation and challenges in integrating multidimensional data, are also addressed to 

enhance the generalizability of the proposed approach. 

Methods 

Study design and patient grouping 

A multicenter retrospective was conducted at three general hospitals (Bunda Margonda Central 

Hospital, Bunda Menteng Central Hospital, and Dr. Cipto Mangunkusumo Central Hospital) in 

Jakarta between April 2020 and July 2021. A total of 367 patients were admitted during this 

period. Of these, 267 subjects were utilized for developing the machine learning models, divided 

into three groups: (1) normal; (2) non-COVID-19 pneumonia; and (3) COVID-19 groups. 

Additionally, 100 suspected COVID-19 patients were used as an external validation cohort to 

evaluate the generalizability of the proposed AI models. These 100 patients were not included in 

the training phase. The discrepancy between the total cohort (367 patients) and the analyzed 

subset (300 patients) arised from the inclusion criteria specific to the study's modeling phase. 

The remaining 67 patients were excluded due to incomplete data or poor-quality chest X-rays. 

This was to ensure that only cases with comprehensive clinical, laboratory, and imaging data were 

used for analysis and modeling. 

Primary and secondary data were collected, encompassing clinical conditions, risk factors 

(such as contact history with at-risk individuals), comorbidities, and supporting clinical 

pathology findings. A study flowchart summarizing the methodology is presented in Figure 1.  
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Figure 1. Study flowchart showing the patient groups used in the study.  

Patients and criteria  

This study included patients aged between 18 and 95 years. Eligible patients had clinical, 

laboratory, and imaging data available for analysis. For the COVID-19 group, patients were 

required to have a diagnosis confirmed by RT-PCR testing, which was performed on 

nasopharyngeal swabs or bronchoalveolar lavage samples in intubated patients. Non-COVID-19 

pneumonia patients were those diagnosed clinically and radiologically with pneumonia but 

confirmed to be negative for COVID-19. The normal group consisted of patients who had no signs 

of pneumonia or COVID-19, as confirmed by chest X-rays and clinical assessments. 

Patients with poor-quality chest X-rays that hindered accurate interpretation were excluded 

from the study. In addition, patients with incomplete clinical or laboratory data records were 

excluded to ensure the integrity and completeness of the data used for analysis. 

Patient classification 

Based on the clinical symptoms, the COVID-19 patients were classified into four categories. Mild 

COVID-19, patients with headache, fever, respiratory and intestinal symptoms; moderate 

COVID-19, patients with symptoms of pneumonia with oxygen saturation at rest >93% and 

imaging findings of pneumonia signs. Severe COVID-19, patients who meet any of the following 

criteria: (1) respiratory rate >30/min (respiratory distress); (2) PaO2/FiO2 <300 mmHg (1 mmHg 

equal to 0.133 kPa); (3) <93% oxygen saturation at rest. Very severe COVID-19, patients who 

meet any of the following criteria: (1) ARDS; (2) required mechanical ventilation; (3) multiple 

organ failure; (4) shock; (5) intensive care unit is required.  

To ensure representativeness, patients were randomly sampled from hospital admissions, 

with stratification based on clinical characteristics and demographic diversity. This approach 

minimized selection bias and ensured a balanced distribution of disease severity across the 

groups. 

Clinical and laboratory data collection 

Clinical and laboratory data were collected from electronic medical records (EMR) and hospital 

information systems (HIS) across the three participating hospitals. The clinical data included 

patient demographics (such as age, sex, and comorbidities), presenting symptoms (e.g., cough, 

fever, and difficulty breathing), and disease severity based on clinical assessment and imaging 

results. The severity of COVID-19 was classified according to a set of established criteria, ranging 

from mild to very severe. Additionally, comorbidities, including hypertension, diabetes mellitus, 

and cardiovascular disease, were recorded to assess their potential role in disease progression. 

For laboratory data, a standardized protocol was followed across the three hospitals to 

ensure uniformity. The key laboratory parameters collected included peripheral blood counts 

(e.g., hemoglobin levels and leukocyte count), inflammatory markers such as C-reactive protein 

(CRP) and D-dimer levels, and serum biochemistry tests, which encompassed electrolytes (e.g., 

sodium, potassium, and chloride), blood glucose levels, and renal and liver function markers. 

These tests were standardized through automated systems calibrated to international diagnostic 

standards. To minimize variability in data collection, teams responsible for collecting clinical and 
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laboratory data were provided with centralized training, which helped to ensure consistency in 

the way data were recorded across the different hospitals. 

Chest X-ray analysis 

Imaging data were obtained using chest X-ray scans performed in either digital anteroposterior 

or posteroanterior views at the time of hospital admission. Across the three hospitals involved in 

the study, 67% of the patients underwent anteroposterior imaging, while 33% underwent PA 

imaging. These imaging procedures were standardized across the facilities to maintain 

consistency in the diagnostic process and ensure comparability of results. 

Six radiologists from three hospitals, who were blinded to the patient groupings, conducted 

manual evaluations of each lung to ensure unbiased interpretation. Each lung was carefully 

assessed for abnormalities, including the presence of ground-glass opacities (GGO), 

consolidation, or other radiological features indicative of pneumonia. The distribution of these 

abnormalities was also categorized, focusing on whether they were localized to peripheral versus 

central regions, anterior versus posterior zones, or apical versus basal areas. 

Each radiologist evaluated the imaging findings while also considering clinical and 

laboratory data. To ensure consistency, a joint review discussion was conducted to resolve any 

discrepancies. Final agreed-upon radiological diagnoses were then used for comparison with AI-

based model classification. 

This comprehensive radiological evaluation was essential in differentiating normal imaging 

findings from those associated with non-COVID-19 pneumonia and COVID-19. By systematically 

analyzing chest X-ray abnormalities alongside clinical and laboratory findings, this study aimed 

to improved diagnostic accuracy in distinguishing COVID-19 from other conditions. 

Sampling and standardization 

The sampling method employed for this study involved consecutive sampling for both COVID-19 

and non-COVID-19 pneumonia patients, while normal cases were retrospectively identified from 

the hospital records. This approach ensured that the study sample accurately reflected the 

population of interest. To ensure consistency across three hospitals, standardized procedures 

were followed during data collection. This included the use of consistent imaging protocols for 

chest X-rays, ensuring that all patients' images were taken in a comparable manner. Furthermore, 

clinical teams across the hospitals utilized a shared data collection template, ensuring that patient 

information was uniformly recorded. Regular audits were conducted throughout the data 

collection period to verify the accuracy and completeness of the collected data, minimizing 

potential sources of bias. 

Statistical analysis 

Descriptive statistics were first calculated to summarize the demographic and clinical 

characteristics of the study population. For categorical data, chi-squared tests were used to assess 

relationships between variables, while continuous variables were analyzed using Mann-Whitney 

tests to detect any significant differences between groups. To identify the significant predictors 

for COVID-19 in the study cohort, binary logistic regression was performed. Additionally, receiver 

operating characteristic (ROC) curves were generated to evaluate the diagnostic performance of 

the AI model and the CORI Score, which were integral to the study's analysis. The ROC curves 

helped assess the sensitivity and specificity of these diagnostic tools, providing valuable insights 

into their effectiveness in distinguishing between normal, non-COVID-19 pneumonia, and 

COVID-19 cases. 

AI model evaluation for COVID-19 classification 

A classification approach within supervised learning was utilized in this study to predict class 

labels from input data. The focus was on classifying COVID-19 through image data analysis using 

deep learning techniques, as proposed by Asnaoui et al. [16] and Wang et al. [12].  

This study explored various deep learning architectures for image classification in the 

proposed framework. The models tested included COVID-Net [12], DenseNet [20], ResNet [21], 

Inception-ResNet [22], DarkCovidNet [23], and CoroNet [17], each known for their effectiveness 

in computer vision and medical image analysis. These architectures were trained and evaluated 
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on the study dataset, with a focus on their classification performance for COVID-19 detection. 

These models were selected due to their high effectiveness in medical image classification, 

particularly in detecting pneumonia and COVID-19 from chest X-ray images. 

In addition to image data, the patient clinical datasets were integrated, combining images, 

numerical, categorical, and text data. To assess the feasibility of AI-assisted diagnostics, multiple 

deep learning models were evaluated for their ability to classify chest X-ray images into three 

distinct categories: normal, non-COVID-19 pneumonia, and COVID-19. Each data type was 

processed individually, and the features were fused at the end of the model to incorporate 

comprehensive patient information.  

The proposed model with the ResNet convolutional network reached a final accuracy of 91%, 

a precision of 84%, 94% sensitivity, 92% specificity, and 89% F1-score. ResNet demonstrated the 

highest classification accuracy, followed by CoroNet, which also exhibited strong performance 

metrics. A comparison of the performance metrics is detailed in Table 1. Following this initial 

testing, ResNet was selected as the primary model for further evaluation due to its highest 

classification performance of all tested metrics. ResNet's deep residual connections allows for 

efficient feature extraction and improved image classification [12,15,21]. A workflow diagram is 

shown in Figure 2. 

Table 1. Performance metrics of different models acquired for images 

Model Accuracy Sensitivity Specificity Precision F1-Score 
ResNet 0.91 0.94 0.92 0.84 0.89 
DenseNet 0.87 0.88 0.89 0.74 0.78 
InceptionResNet 0.87 0.94 0.86 0.85 0.73 
DarkCovidNet 0.91 0.76 0.89 0.73 0.69 
CoroNet 0.91 0.94 0.92 0.87 0.81 
COVID-Net 0.31 1.00 0.00 0.31 0.48 

 

 

Figure 2. Image-patient data model architecture with ResNet. 
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Deployment and external validation of ResNet model using Kalamakara-AI  

database 

Lastly to further validate our AI model, the ResNet model was integrated into Kalamakara-AI, a 

cloud-based web platform designed for easy use and sharing among medical professionals. This 

AI system is a browser-based web application (http://kalamakara-ai.ui.ac.id/) that takes chest X-

ray images and prompts users to anonymously fill out a form for the patient's clinical 

examination, including temperature, fever duration, other conditions, and comorbidities. Some 

examples of COVID-19 symptoms included in the form are cough, flu, sore throat, headache, 

faintness, shivering, nausea, diarrhea, muscle ache, abdominal pain, and breathing difficulty. The 

images were classified into normal imaging, non-COVID-19 pneumonia imaging, or COVID-19 

imaging. The system outputted the probability score that predicted the final diagnosis of the 

patients. The Kalamakara-AI web application could predict COVID-19 in just a few seconds with 

a 100% probability score and outputs a 0% probability for pneumonia and normal cases, 

respectively. This platform allowed the AI system to be tested on real-world clinical data, where 

healthcare professionals could upload chest X-ray images and receive automated diagnostic 

predictions. 

Development of the CORI Score 

To enhance diagnostic accuracy, the COVID-19 Risk Index (CORI) Score was designed to 

integrate clinical, laboratory, and imaging data into a structured model. By incorporating these 

multiple parameters, the CORI score aimed to provide an accessible, structure tool for clinical 

decision-making without relying on complex computational models. The key steps in this process, 

from data collection to final classification into normal, COVID-19, or non-COVID-19 pneumonia, 

ensuring a more comprehensive evaluation are outlined in Figure 3. 

 

 

Figure 3. Model architecture to build CORI score.  

http://kalamakara-ai.ui.ac.id/
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Although AI-assisted imaging analysis was explored in this study, the CORI score was 

developed independently of deep learning model. The AI model functioned exclusively as 

standalone classifiers for chest X-ray interpretation and was not incorporated into the CORI 

score's calculation. Instead, the CORI score relied on logistic regression modeling, where each 

clinical, laboratory, and imaging parameter was assigned a weighted coefficient based on 

statistical significance.  

Results 

Patients' characteristics 

Of the initial 367 patients, 67 were excluded due to incomplete data or poor-quality chest X-ray 

images, leaving 300 patients who met the inclusion criteria for analysis. A total of 300 patients 

then included in the study consisted 100 patients with normal chest imaging, 100 non-COVID-19 

pneumonia patients, and 100 RT-PCR-confirmed COVID-19 cases. The characteristics of patients 

included in the study are presented in Table 2. The study sample included 151 men (50.3%) and 

149 women (49.7%), with a mean age of 70 years (range: 36–95 years). There was a significant 

difference in age distribution (p=0.004), while gender distribution was not statistically 

significant (p=0.581).  

In terms of disease severity, the majority of the COVID-19 group had moderate pneumonia 

(47%), while non-COVID-19 pneumonia patients had mild pneumonia (59%), and the normal 

imaging group was predominantly mild (94%) (p<0.001) (Table 2). Symptoms at presentation 

also differed between groups. Cough was the most frequent symptom in COVID-19 patients 

(76%), while 50% of non-COVID-19 pneumonia patients also reported cough. In the normal 

imaging group, malaise was the most commonly reported symptom (13%). Although a significant 

p-value (<0.001) was observed for disease severity across the groups, no significant differences 

were found for symptoms like malaise and shivering (Table 2). 

Of the COVID-19 patients, 48% had underlying diseases, with hypertension (n=14) and 

diabetes mellitus (n=14) being the most common comorbidities (Table 2). In the non-COVID-19 

pneumonia group, 47% had hypertension (n=16), and 9% had malignancy. The normal imaging 

group also had patients with comorbidities such as hypertension and malignancy.  

Table 2. Characteristics of subjects included in the study 

Characteristic Subject group p-value 
COVID-19 
(n=100) 

Non COVID-19 
(n=100)  

Normal 
(n=100) 

Age (years)    0.004 
18–25 7 (7%) 3 (3%) 5 (5%)  
26–35 21 (21%) 14 (14%) 25 (25%)  
36–45 30 (30%)  17 (17%) 26 (26%)  
46–55 18 (18%) 15 (15%) 20 (20%)  
56–65 14 (14%) 24 (24%) 11 (11%)  
>65 10 (10%) 27 (27%) 13 (13%)  

Sex     
Male 53 (53%) 51 (51%) 46 (46%) 0.581 
Female 47 (47%) 48 (48%) 54 (54%)  

Symptom     
Fever 69 (69%) 18 (18%) 10 (10%) 0.001 
Cough 76 (76%) 50 (50%) 7 (7%) <0.001 
Anosmia 18 (18%) 1 (1%) 0 (0%) <0.001 
Ageusia 4 (4%) 0 (0%) 0 (0%) 0.017 
Malaise 24 (24%) 23 (23%) 13 (13%) 0.099 
Flu 23 (23%) 2 (2%) 3 (3%) <0.001 
Muscle pain 17 (17%) 0 (0%) 2 (2%) <0.001 
Nausea vomitus 20 (20%) 3 (3%) 9 (9%) <0.001 
Hard breath 21 (21%) 6 (6%) 5 (5%) <0.001 
Abdominal pain 32 (32%) 36 (36%) 6 (6%) <0.001 
Shiver 2 (2%) 4 (4%) 1 (1%) 0.359 
Diarrhea 11 (11%) 0 (0%) 3 (3%) 0.001 
Headache 20 (20%) 3 (3%) 4 (4%) <0.001 

Comorbidity     
Obesity 2 (2%) 0 (0%) 1 (1%) 0.364 
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Characteristic Subject group p-value 
COVID-19 
(n=100) 

Non COVID-19 
(n=100)  

Normal 
(n=100) 

Hypertension 14 (14%) 16 (16%) 7 (7%) 0.127 
Diabetes 14 (14%) 6 (6%) 2 (2%) 0.004 
Chronic kidney disease 2 (2%) 1 (1%) 2 (2%) 0.816 
STEMI 2 (2%) 1 (1%) 0 (0%) 0.364 
NSTEMI 1 (1%) 0 (0%) 1 (1%) 0.604 
COPD 0 (0%) 2 (2%) 0 (0%) 0.134 
Tuberculosis 2 (2%) 8 (8%) 1 (1%) 0.017 
Autoimmunity 1 (1%) 3 (3%) 1 (1%) 0.443 
Malignancy 4 (4%) 10 (10%) 9 (9%) 0.232 
Hepatitis 4 (4%) 0 (0%) 1 (1%) 0.071 
HIV 2 (2%) 0 (0%) 2 (2%) 0.363 

Laboratory     
Hemoglobin, median 11.9 g/dL 11.9 g/dL 12.75 g/dL 0.104 
Leukocyte, median 8865 cells/µL 9000 cells/µL 8220 cells/µL 0.292 
D-dimer, median 3270 ng/mL 3270 ng/mL 1485 ng/mL 0.004 
CRP, median 37.8 mg/L 37.8 mg/L 22.9 mg/L 0.376 
Blood glucose level, median 108 mg/dL 109.5 mg/dL 103 mg/dL 0.134 
Aspartate aminotransferase, median  24 U/L 24 U/L 21 U/L 0.098 
Alanine aminotransferase, median 23.5 U/L 23.5 U/L 21 U/L 0.119 
Sodium, median 137 mmol/L 137 mmol/L 137 mmol/L 0.957 
Potassium, median 3.9 mmol/L 3.9 mmol/L 3.9 mmol/L 0.800 
Chloride, median 99 mmol/L 99 mmol/L 100.8 mmol/L 0.344 
Urea, median 28.85 mg/dL 28.85 mg/dL 25.45 mg/dL 0.490 
Creatinine, median 28.85 mg/dL 0.9 mg/dL 0.8 mg/dL 0.167 

Imaging analysis     
Apical vs basal    <0.001 

Apical 20 (20%) 32 (32%)   
Basal 80 (80%) 44 (44%)   
Apical and basal 0 (0%) 24 (24%)   

Anterior vs posterior    <0.001 
Anterior 91 (91%) 53 (53%)   
Posterior 2 (2%) 5 (5%)   
Anterior and posterior 7 (7%) 42 (42%)   

Unilateral vs bilateral    0.138 
Unilateral 25 (25%) 33 (33%)   
Bilateral 75 (75%) 67 (67%)   

Peripheral vs central    0.001 
Peripheral 18 (18%) 8 (8%)   
Central 56 (56%) 42 (42%)   
Peripheral and central 26 (26%) 50 (50%)   

Opacity vs non-opacity    0.217 
Opacity 39 (39%) 51 (51%)   
Non-opacity 48 (48%) 40 (40%)   
Opacity and non-opacity 13 (13%) 9 (9%)   

Consolidation vs non-consolidation    0.001 
Consolidation 12 (12%) 13 (13%)   
Non-consolidation  88 (88%) 87 (87%)   

Ground-glass opacities vs non-
ground-glass opacities 

   <0.001 

Ground-glass opacities  25 (25%) 16 (16%)   
Non-ground-glass opacities 75 (75%) 84 (84%)   

Findings from Kalamakara-AI external evaluation 

Out of 100 total cases uploaded into the Kalamakara-AI system, the model predicted COVID-19 

in 39 patients (39%), non-COVID-19 pneumonia in 35 patients (35%), and identified normal 

chest imaging in 22 patients (22%), all with a prediction confidence score of 80% or higher. The 

remaining 4% of cases yielded prediction confidence below 80% and were therefore not 

conclusively classified by the AI. These results were generated through an integrated assessment 

combining chest X-ray image analysis with clinical information provided by the attending 

physicians. 

Building CORI score 

The CORI score (COVID-19 Risk Index) was developed using a logistic regression model, 

designed to assess the likelihood of a patient having COVID-19 based on key clinical symptoms, 



 Kamelia et al. Narra J 2025; 5 (2): e1606 - http://doi.org/10.52225/narra.v5i2.1606        

Page 9 of 14 

O
ri

g
in

al
 A

rt
ic

le
 

 

 

laboratory, and radiological findings interpreted by radiologist. These predictors were identified 

through univariate analysis, which revealed significant associations with COVID-19 infection. 

Binary logistic regression showed that demographics, such as age group (e.g., 36–45 years), were 

significant predictors, with older age groups generally indicating higher risk. Key symptoms, 

including cough, fever, flu-like symptoms, and anosmia, contributed a score based on their 

presence and severity. Laboratory markers, like AST, ALT, and creatinine levels, reflected the 

patient's health and risk of complications. Imaging findings from chest X-rays, including the 

distribution and type of abnormalities (e.g., ground-glass vs non-ground-glass opacities), were 

also essential for the model. Each factor was attributed a proportional value, generating a 

cumulative risk score, where higher scores indicated greater likelihood of COVID-19. The model 

structure is illustrated in Figure 3. 

Significant predictors of COVID-19 case identification 

The binary logistic regression model identified significant predictors for the identification of 

COVID-19 cases and the results are presented in Table 3. The binary logistic regression analysis 

revealed several key factors significantly associated with COVID-19. These findings provided a 

robust foundation for the development of the CORI Score by integrating clinical, imaging, and 

laboratory predictors. The strongest predictor of COVID-19 was group classification (β1=6.633, 

p<0.001), as anticipated, given the model's aim to differentiate COVID-19 cases from non-

COVID-19 pneumonia and normal groups. The age group of 36–45 years showed significant 

disease correlation, as indicated in the logistic regression model. This group was more likely to 

be affected by COVID-19 compared to others, aligning with observed patterns in the demographic 

data. Chest X-ray findings played a crucial role in distinguishing COVID-19. Basal abnormalities 

(Apical vs Basal: β3=0.955, p<0.001) were strongly associated with COVID-19, reflecting known 

imaging patterns of the disease. The presence of opacities (opacity vs non-opacity: β4=0.958, 

p<0.001) was also highly predictive. Conversely, the absence of ground-glass opacities (GGO vs 

Non-GGO: β5=-1.048, p=0.002) significantly reduced the likelihood of COVID-19, highlighting 

the distinct radiological features often observed in these patients. Certain clinical symptoms were 

identified as significant predictors. Fever (β7=0.444, p=0.020) and flu-like symptoms 

(β8=0.789, p<0.001) showed strong positive associations with COVID-19, reaffirming their 

diagnostic relevance. Interestingly, cough (β6=-0.394, p=0.048) was less predictive, possibly due 

to its nonspecific nature and presence in various other respiratory conditions. Among laboratory 

findings, elevated AST levels (β11=0.022, p=0.045) were found to be mildly predictive of COVID-

19. Although its effect size was modest, this underscores the importance of incorporating 

laboratory markers for a more comprehensive diagnostic model.  

Table 3. Binary logistic regression model for significant predictor of COVID-19 case identification 

Variable Coefficient (β) p-value 

Group study 6.633 <0.001 

Anterior vs posterior -0.106 0.035 

Apical vs basal 0.955 <0.001 

Opacity vs non-opacity 0.958 <0.001 

Ground-glass opacities vs non-ground-glass opacities  -1.048 0.002 

Presence of cough -0.394 0.048 

Presence of fever 0.444 0.020 

Presence of flu-like symptom 0.789 <0.001 

Presence of anosmia -0.523 0.030 

Serum creatinine level -0.009 0.080 

Aspartate aminotransferase level 0.022 0.045 

Alanine aminotransferase level -0.200 0.058 

 

The CORI Score was calculated by applying these coefficients to individual patient data, with 

a higher score indicating a greater likelihood of COVID-19. The diagnostic performance of the 

CORI Score was evaluated using ROC curve analysis. The ROC curves demonstrated a significant 

area under the curve for diagnosing COVID-19, indicating the model's robustness in 

distinguishing between COVID-19 and other conditions.  
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Diagnostic performance of the CORI score 

The diagnostic test of CORI Score demonstrated high performance, with a sensitivity of 98%, 

specificity of 95.4%, and overall accuracy of 96.6%. The negative predictive value (NPV) was 

99.5%, while the positive predictive value (PPV) was 91.08%. The area under the curve (AUC) was 

0.982 (95% confidence interval: 0.965–0.999), indicating excellent discriminative ability 

(p<0.001) (Figure 4). 

 

Figure 4. ROC of CORI score showing an area under the curve of 0.982 (95% confidence interval 
(CI): 0.965–0.999) and p<0.001 for diagnosing COVID-19. 

Testing and validation 

The CORI score's diagnostic accuracy was further validated with a hold-out test set of 300 

patients, where structured clinical, laboratory, and chest X-ray findings were collected. These 

patients were divided as follows: 100 images from COVID-19 patients, 100 images from non-

COVID-19 pneumonia patients, and 100 images from normal patients. The ROC curves of the 

CORI Score displayed a high AUC for diagnosing COVID-19, confirming its high diagnostic 

accuracy. 

In comparison, the ResNet model, a deep learning algorithm used for image classification, 

was also evaluated on this dataset. Unlike the CORI score, ResNet was directly applied to the raw 

chest X-ray images in combination with clinical parameters. It achieved an overall accuracy of 

82%, correctly identifying 82 out of 100 COVID-19 cases. It demonstrated a sensitivity of 100%, 

detecting all COVID-19 cases, but had a low specificity of 18%, misclassifying a significant number 

of non-COVID-19 pneumonia and normal cases as COVID-19. While ResNet performed well in 

detecting pneumonia cases, its limited specificity resulted in a higher rate of false positives for 

COVID-19.  

The CORI score demonstrated strong diagnostic performance by incorporating a 

combination of clinical, laboratory, and interpreted radiological data, making it a highly effective 

tool for diagnosing COVID-19 cases. During binary logistic regression, COVID-19 infection 

showed a significant relation with the identified predictors, contributing to the model's high 

sensitivity and specificity. The score's ROC curve analysis highlighted its superior diagnostic 

performance, with a sensitivity of 98%, specificity of 95.4%, and accuracy of 96.6%.  

However, further prospective validation is necessary to determine the optimal cut-off point 

for clinical use. Establishing a validated cut-off is essential to maximize diagnostic accuracy while 

minimizing false positives and false negatives, ensuring the CORI score can be effectively applied 

across diverse patient populations. Without this validation, the remains a promising yet 

incomplete diagnostic tool, requiring additional studies to refine its clinical applicability, 

threshold values, and real-world performance. 

Unlike standalone AI-based models such as ResNet, which rely solely on raw radiological 

images and clinical features processed through complex AI algorithms, the CORI Score offers a 
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more interpretable, structured approach by integrating explicitly identified clinical parameters. 

Rather than comparing them head-to-head, their outcomes were observed in parallel to evaluate 

whether AI-generated results could reflect real-world diagnostic logic embedded within CORI 

scoring system. This makes the CORI score more comprehensive tool for early detection and 

management of COVID-19, particularly in settings where AI-based diagnostics may be limited by 

computational or infrastructure constraints. 

Interobserver agreement 

Interobserver agreement in radiological assessment plays a critical role in validating the 

reliability and reproducibility of imaging-based diagnostics. In this study, six radiologists from 

three hospitals independently evaluated the chest X-ray dataset, interpreting the images without 

prior knowledge of the AI model classification results. Each of them assessed the images while 

also considering the corresponding clinical symptoms and laboratory findings. The individual 

interpretations were then reviewed collectively in a joint discussion, confirming that potential 

discrepancies were addressed before finalizing the radiological diagnoses. 

Following this independent assessment, the final agreed-upon radiological interpretations 

were compared to the AI-based classification results. The findings demonstrated a high level of 

concordance between the radiologist's interpretations and the Kalamakara-AI outputs, indicating 

that it effectively captured key radiological features relevant to COVID-19 classification. This 

agreement supports the validity of imaging data used in this study, proving the variability in 

radiological assessments did not introduce bias into the development of the CORI score.  

Discussion 
Early and accurate detection and diagnosis of COVID-19 remains a crucial challenge, particularly 

in resource-limited settings where RT-PCR testing is not always accessible [24,25]. Prior research 

has indicated the effectiveness of chest X-ray images in diagnosing COVID-19 [26,27]. This study 

presented an AI-driven system based on ResNet, designed to detect the presence of COVID-19 in 

chest X-ray images and differentiate it from normal/healthy conditions or non-COVID-19 

pneumonia [17]. The CORI score, developed in this study, used logistic regression modeling to 

integrate clinical symptoms, laboratory markers, and radiological findings into a structured 

diagnostic model, offering a practical alternative to traditional methos. Elevated D-dimer levels, 

a key finding in this study, are commonly observed in COVID-19 patients [28], indicating 

infection severity, immune status, and worse prognosis, especially in cases with disseminated 

intravascular coagulation due to fibrin breakdown in blood clots [29,30]. ROC curve analysis 

confirmed its strong diagnostic performance, with a sensitivity of 98%, specificity of 95.4%, and 

overall accuracy of 96.6%, underlining its potential for aiding clinical decision-making. 

In a previous study, combining radiological imaging and clinical data with AI algorithms was 

reported to be more accurate in detecting COVID-19 infection [19]. AI-assisted image analysis 

was explored in this study using Kalamakara-AI web application, with ResNet achieving the 

highest accuracy (91%), showcasing its potential for automated COVID-19 screening. Therefore, 

it has been ensured that the Kalamakarata-AI-based web applications is publicly accessible, 

allowing healthcare professionals to test its implementation in clinical practice. Critical feedback 

from medical professionals will provide additional guidance to improve the Kalamakara-AI 

model for a better one. Prior research has shown that deep learning models, particularly 

convolutional neural networks (CNNs), can perform comparably to radiologists in detecting 

pneumonia and COVID-19-related abnormalities [22]. However, AI models often require large 

datasets and specialized computational resources, limiting their feasibility in low-resource 

settings. Unlike AI-based models that rely solely on imaging, the CORI score integrates multiple 

diagnostic modalities, making it more accessible for diverse healthcare settings. By combining 

different diagnostic parameters, the CORI score improves predictive accuracy while reducing 

dependence on advanced imaging technology, offering a practical alternative where AI-based 

diagnostics like Kalamakara-AI may not be available. 

Despite its promising diagnostic performance, the CORI score requires further validation 

before widespread clinical implementation. This study has several limitations that must be 

addressed in future research. A prospective validation study is needed to assess the CORI score's 
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performance in real-world settings. While the CORI score showed high sensitivity and specificity, 

an optimal diagnostic threshold has not been formally established. Further multi-center 

validation studies are necessary to define a clinically relevant cut-off point that minimizes false 

positives and false negatives, assuring consistent diagnostic accuracy across different 

populations. Variability in clinical and radiological data remains a factor, and although six 

radiologists agreed with the AI-based imaging results, radiological assessment can still be subject 

to interobserver variability in clinical practice. Additional studies should explore whether 

standardized radiological scoring criteria can further improve the reproducibility of imaging-

based diagnostics. 

This study was conducted in a limited number of hospitals, and the CORI score's applicability 

to other geographic regions and patient demographics remains unknown. Further validation 

across diverse healthcare settings is essential to confirm its generalizability and robustness. 

Additionally, although the CORI score was shown to be effective, its performance should be 

compared with existing clinical scoring systems, such as qSOFA, to determine its relative 

effectiveness in predicting COVID-19 severity and progression [31]. These refinements will be 

crucial in optimizing the CORI score as a practical, evidence-based diagnostic tool for COVID-19 

and future respiratory infections. 

Conclusion 
The AI model and a new diagnostic score have been developed in Indonesia to identify COVID-

19 infection utilizing chest X-ray combined clinical and laboratory data. The ResNet exhibited the 

highest accuracy, sensitivity, and specificity relative to other models. In the diagnosis of COVID-

19, the AI model and CORI Score proved promising potential and performed in a manner 

comparable to that of experienced thoracic radiologists in Indonesia. After validation, the AI 

Model and CORI Score are appropriate for wide use in Indonesia. 
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