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Abstract 
The therapeutic potential of bitter leaf (Vernonia amygdalina Del.) has been established 

both empirically and in various scientific investigations. However, the molecular pathways 

related to its possible anti-inflammatory and antioxidant properties remain unclear. 

Therefore, the aim of this study was to elucidate the molecular interactions between bitter 

leaf's bioactive compounds and cellular targets involved in these activities. The 

compounds in bitter leaf were identified using gas chromatography-mass spectrometry 

(GC-MS) analysis, and subsequently, a network pharmacology approach was employed 

together with molecular docking and dynamics simulations. Acetonitrile (4.5%) and 

dimethylamine (4.972%) were the most prevalent compounds among the 38 identified by 

the GC-MS analysis of bitter leaf extract. The proto-oncogene tyrosine-protein kinase 

(SRC) demonstrated significant connectivity within the antioxidant network, highlighting 

its pivotal role in facilitating inter-protein communication. It also exhibited strategic 

positioning in anti-inflammatory mechanisms based on closeness centrality (0.385). The 

enrichment analysis suggested multifaceted mechanisms of bitter leaf compounds, 

including transcriptional regulation and diverse cellular targeting, indicating broad 

antioxidant and anti-inflammatory effects. Eicosapentaenoyl ethanolamide (EPEA) 

displayed strong interactions with multiple proteins, including SRC (-7.17 kcal/mol) and 

CYP3A4 (-6.88 kcal/mol). Moreover, EPEA demonstrated to form a stable interaction 

with SRC during a 100 ns simulation. In conclusion, the computational simulations 

revealed that the hypothetical antioxidant and anti-inflammatory actions of bitter leaf 

compounds were achieved by specifically targeting SRC. However, confirmation using 

either in vitro or in vivo techniques is necessary. 

Keywords: Anti-inflammatory, antioxidant, bitter leaf, network pharmacology, 

Vernonia amygdalina 

Introduction 

Investigating the medical uses of natural compounds has attracted more and more interest in 

recent scientific research [1,2]. In this light, scientists are becoming interested in a native West 

African plant known as bitter leaf (Vernonia amygdalina Del.). Rich in phytochemicals and with 
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a clearly bitter taste, this plant has long been employed in traditional medicine for many 

conditions [3-5]. Bitter leaf is thought to have notable molecules with anti-inflammatory and 

antioxidant properties. Such activities are essential pharmacological targets for various chronic 

diseases, including cardiovascular diseases, neurological disorders, and metabolic syndromes 

[6,7]. Therefore, investigating natural substances with anti-inflammatory and antioxidant 

characteristics presents great possibilities for creating creative treatment approaches to handle 

common health problems. According to earlier meta-analyses, substances such as curcumin and 

ursolic acid are effective substitutes for controlling oxidative stress and inflammation [8,9].  

Although bitter leaf has a long history of traditional use and evidence supporting its efficacy, 

the precise molecular mechanisms behind its pharmacological effects remain unknown. 

Occasionally, conventional pharmacological methods are unable to completely comprehend the 

intricate interactions among bioactive compounds in plant extracts and their impact on cellular 

signaling pathways. Nevertheless, network pharmacology has emerged as a potent paradigm for 

comprehending the intricate interactions between drugs, targets, and diseases within biological 

networks through the application of computational methodologies and systems biology [10,11]. 

This approach systematically explores the molecular landscape underlying the therapeutic 

qualities of natural compounds through the use of computational techniques, network analysis, 

and the integration of omics data [12]. Furthermore, the predictive power of this method helps 

prioritize target proteins and candidate compounds for subsequent experimental validation, 

thereby accelerating the drug development process [13-15]. Previous studies have demonstrated 

that network pharmacology is an effective approach for identifying anti-inflammatory 

compounds derived from natural sources [14,16].  

In order to investigate the molecular mechanisms and therapeutic potential of bitter leaf in 

natural medicine, a network pharmacology approach was implemented to characterize its 

antioxidant and anti-inflammatory properties. The aim of this study was to elucidate the complex 

network of interactions between the constituents of bitter leaf and their cellular targets by 

incorporating computational analyses. This method facilitates the rational application of its 

pharmacological properties in drug discovery and development and enhances comprehension of 

its properties. Additionally, molecular docking and molecular dynamics simulations were 

employed to clarify the binding interactions between bitter leaf components and their specific 

targets, thereby offering a more comprehensive understanding of their pharmacological effects. 

Methods 

Sample preparation 

Fresh bitter leaves (1.5 kg) were trimmed into small fragments and air-dried in a greenhouse 

environment. The samples were collected from the Carang Pulang region in Dramaga, Bogor, 

Indonesia. The fragmented leaves were evenly spread on trays and left undisturbed for 20 hours 

until the moisture content reduced to less than 10%, as suggested previously [17]. The moisture 

content was assessed utilizing the Association of Official Analytical Chemists (AOAC) technique 

[18]. The greenhouse experienced fluctuations in temperature, averaging 32°C with 70% 

humidity.  

Low-frequency ultrasonic waves (20–40 kHz) were used during ultrasonic-assisted 

extraction (UAE) to enhance the interaction between the solvent and the bitter leaf at room 

temperature [19]. The leaves were ground, measured, and combined with 80% methanol in a 

weight-to-volume ratio of 1:6 [20]. The sonication procedure was conducted at a power level of 

200 W and 20 kHz frequency for 30 minutes. Afterward, the solvent was removed by subjecting 

it to a water bath at a 65°C for 30 minutes to 1 hour, resulting in a concentrated extract. 

Gas chromatography-mass spectrometry (GC-MS) analysis 

The volatile compounds were analyzed using gas chromatography-mass spectrometry (GC-MS), 

employing a Perkin Elmer Clarus 500 gas chromatograph coupled to a Perkin Elmer Clarus SQ 

8S mass spectrometer. The separation was achieved using a Perkin Elmer Elite-5ms capillary 

column with dimensions of 30 meters length, 0.25 mm internal diameter, and 0.25 µm film 

thickness. Electron ionization was applied at 70 eV and the mass scanning range extended from 
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40 to 450 Da. Helium served as the carrier gas with the split mode set to 10:1. The injector 

temperature was maintained at 250°C, and a volume of 1 µL of sample was introduced, with a 

solvent delay of two minutes to facilitate the evaporation of the solvent prior to analysis. The oven 

settings for the analysis were as follows: the initial temperature was adjusted to 110°C and kept 

for two minutes. This was followed by a ramp rate of 10°C/min until reaching 200°C, which was 

then held for an additional two minutes. The temperature was increased gradually at a rate of 5°C 

per minute until it reached a final temperature of 280°C. Compounds were identified by 

comparing the mass spectra obtained with those in the NIST reference library. Additionally, 

where available, reference standards were used to confirm the identities of key compounds. 

Network pharmacology 

Target identification 

The 24 substances were evaluated using SwissTargetPrediction to identify the most likely proteins 

or enzymes to be activated, with a cut-off probability value greater than 0 [21]. Using the 

GeneCards database with the keywords "inflammation" and "oxidation," all targets were 

gathered, and any duplicates with a relevance score greater than 5 were removed, resulting in a 

total of 500 candidates for each keyword to be used as biological targets [22]. All data were 

accessed in March 2024. A Venn diagram was employed to illustrate the overlap of active 

compounds with the targets from SwissTargetPrediction and GeneCards.  

Analysis of protein-protein interactions (PPIs) 

The identified overlapping targets were transferred to the STRING protein-protein interaction 

web database, selecting the human option (Homo sapiens) and highest confidence level (0.900) 

[23]. Network parameters of drug target PPIs, including degree and betweenness, were analyzed 

using Cytoscape 3.9.1 software (Institute for Systems Biology, Washington, USA) to understand 

the intermediary functions of the drug targets [24].  

Functional enrichment of Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway 

The GO and KEGG pathway analyses were conducted using the Database for Annotation, 

Visualization and Integrated Discovery  (DAVID) database [25]. The composition of GO 

comprises three ontologies: Biological Process (BP), Molecular Function (MF), and Cellular 

Component (CC) [26]. The importance of the enrichment outcome is determined using the -log10 

transformation of the p-value. Afterwards, the collected results were visualized using the SRPlot 

tool using GO and KEGG enrichment plot [27]. 

Molecular docking  

The ligand structures were obtained from PubChem in 3D format. For compounds available only 

in 2D format, their structures were converted to 3D using the MarvinSketch application. The 

protein structures, including protein SRC (PDB ID: 2H8H), protein CYP3A4 (PDB ID: 5TE8), 

protein ESR1 (PDB ID: 1X7R), and protein STAT3 (PDB ID: 6NJS), were validated based on 

Ramachandran plots using the Procheck program on the PDBsum web server. Each protein has 

a specific binding region, so the binding site or binding area was determined accordingly.  

A grid box was used to define the size of the area on the protein where the compounds would 

be docked. The grid box was determined based on the native ligand binding area of the protein. 

The grid box size was obtained using the Biovia Discovery Studio application. Molecular docking 

was performed using Gnina through Google Colab (https://github.com/gnina/gnina) [28]. The 

molecular docking process began by uploading each protein and ligand file into the Gnina folder, 

followed by executing the process using predefined text commands, which were modified as 

needed. 

Molecular dynamics simulations 

The molecular dynamics simulations (MDS) were performed following previously established 

procedures [29]. Gromacs 2020.4 [30] was used to explore the dynamic behavior [31] and 

binding interactions of the ligand-protein complex. The necessary input files for MDS were 

https://github.com/gnina/gnina
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generated via the CHARMM-GUI [32] server. The topology of the ligand-protein complex was 

constructed utilizing CHARMM36m force fields [33] and the TIP3 water model [34]. A 

rectangular box with 3D periodic boundary conditions was selected for solvation, maintaining a 

15 Å distance between the box edges and the protein-protein complex  [31]. The system was 

neutralized with 0.15 M KCl using the Monte Carlo method. Energy minimization was executed 

with the steepest descent integrator over 5000 steps. System equilibration was carried out with 

0.5 ns NVT/NPT ensembles at 303.15 K and 1 atm pressure, employing the Nose–Hoover 

thermostat [35] and Parrinello–Rahman barostat [36], respectively. The leap-frog integration 

method facilitated 100 ns molecular dynamics (MD) simulations, comprising 1000 frames with 

2 fs time steps [37,38]. The superimposition of the complex configuration at 0ns, 50ns, and 100ns 

was performed using PyMOL [39].  

Results 

Profile of bitter leaf extract metabolite compounds  

GC-MS analysis identified 38 compounds in the extract of bitter leaf (Table 1). Compounds such 

as dimethylamine and acetonitrile appeared multiple times at different retention times and scan 

numbers, indicating their high prevalence in the sample. The most abundant compounds are 

dimethylamine and acetonitrile with retention areas of 4.972% and 4.517%, respectively. The 

identified compounds were classified into 13 groups based on their main functional groups in the 

molecule. Firstly, the amine group consists of dimethylamine, which appeared twice. Next, the 

amide group was represented by butanamide, 3-(2-. Nitrile is present in 4,4-ethylenedioxy-

pentanenitrile and acetonitrile, appearing four times. The aldehyde group consists of 2-

formylhistamine and 3,7-dimethylnona-2,6-dienal. The alcohol group was represented by 2-

heptanol, 6-amino-2-, 1-octanol, 2,7-dimethyl-, and 1-octen-3-ol. The alcohol group includes 2-

heptanol, 6-amino-2-, 1-octanol, 2,7-dimethyl-, and 1-octen-3-ol. Ester compounds include 10-

undecenoic acid, octyl ester, and valeric acid, 2-tridecyl ester. Ketones were represented by 10-

undecen-4-one, 2,2,6,6-tetramethyl-, while other compounds include oxirane, octyl-, and 3-

propionyloxytridecane. Hydrocarbons are present in decane, 2,4,6-trimethyl-, tridecane, 5-

methyl-, octadecane, 1-(ethenyloxy)-, 6-methyloctadecane, and 1,4-dimethyl-3-n-

octadecylcyclohexane. Carboxylic acids consist of octanoic acid, 7-oxo-, oxalic acid, butyl ester, 

and dodecanoic acid, 3-hydroxy-. Diazena amide was presented in the form of 

diazenecarboximidoyl. Finally, other compounds include hydrazinecarboxamide, cyclopentane, 

1-acetyl-, 2-butyltetrahydrofuran, 3-methyl-1-dodecyn-3-ol, and trans-4-

pentylcyclohexanecarboxylic acid (Table 1). 

Table 1. The compound profile derived from the bitter leaf extract based on gas chromatography-

mass spectrometry (GC-MS) analysis 

Retention time (min) Scan Area % Compound name 
2.043 9 3.012 2-Formylhistamine 
2.864 173 3.345 Dimethylamine 
4.304 461 1.627 Dimethylamine 
4.955 591 1.024 4,4-Ethylenedioxy-pentanenitrile 
5.89 778 0.613 2-Heptanol, 6-amino-2- 
6.605 921 0.614 Hydrazinecarboxamide 
33.231 6244 0.581 3,7-Decadiene, 2,9- 
33.366 6271 1.342 Decane, 2,4,6-trimethyl- 
33.451 6288 2.048 1-Octanol, 2,7-dimethyl- 
33.511 6300 1.05 Tridecane, 5-methyl- 
33.541 6306 0.939 Acetonitrile 
33.621 6322 1.226 Acetonitrile 
33.656 6329 0.78 Eicosapentaenoyl ethanolamide 
34.177 6433 0.629 Diazenecarboximidoyl 
34.227 6443 0.775 Octanoic acid, 7-oxo- 
34.292 6456 1.58 Octadecane, 1-(ethenyloxy)- 
34.332 6464 0.673 Butanamide, 3-(2- 
34.392 6476 0.672 Cyclopentane, 1-acetyl- 
34.532 6504 0.896 Acetonitrile 
34.677 6533 0.657 1-Octen-3-ol 
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Retention time (min) Scan Area % Compound name 
34.722 6542 0.754 10-Undecenoic acid, octyl ester 
34.872 6572 1.075 10-Undecen-4-one, 2,2,6,6-tetramethyl- 
34.922 6582 0.614 Oxirane, octyl- 
34.987 6595 1.228 3-Propionyloxytridecane 
35.037 6605 1.426 1,2-15,16-Diepoxyhexadecane 
35.092 6616 0.728 Acetonitrile 
35.137 6625 0.952 3,7-Dimethylnona-2,6-dienal 
35.187 6635 1.139 2-(3-Cyclohexylaminopropylamino) 

ethylthiophosphate 
35.262 6650 1.1 Butanoic acid, 2-hexenyl ester, (E)- 
35.327 6663 0.711 Cyclooctanone, oxime 
35.467 6691 0.699 trans-4-Pentylcyclohexanecarboxylic 

acid 
35.492 6696 0.656 Oxalic acid, butyl 
35.517 6701 1.19 6-Methyloctadecane 
35.572 6712 0.607 1,4-Dimethyl-3-n-octadecylcyclohexane 
35.647 6727 0.825 3-Methyl-1-dodecyn-3-ol 
35.752 6748 1.116 2-Butyltetrahydrofuran 
35.832 6764 1.266 Valeric acid, 2-tridecyl ester 
35.857 6769 0.606 1,2-Cyclopentanediol, 3-methyl 
35.937 6785 0.58 Dodecanoic acid, 3-hydroxy- 
35.972 6792 0.728 Acetonitrile 

Potential active compounds and targets 

SwissTargetPrediction analysis identified a total of 404 protein targets associated with the 

compounds present in the bitter leaf extract, indicating the potential bioactivity of these 

compounds against various protein targets. GeneCards was subsequently employed to select 

proteins linked to inflammatory and oxidative activities within cells, with a strict cut-off (>5 

relevance score) applied to ensure the selection of highly relevant proteins. This process led to 

the identification of 500 proteins for each activity.  

Analysis using Venn diagrams (Figure 1) revealed the overlaps between the protein targets 

of the bitter leaf extract and those associated with inflammation and oxidative stress. Specifically, 

63 proteins overlapped with inflammation-related proteins and 62 proteins overlapped with 

oxidative stress-related proteins. This indicated the potential involvement of the bitter leaf extract 

in modulating these biological pathways. Additionally, 24 protein targets were found to be 

common among all three components: the bitter leaf extract, inflammation, and oxidative stress. 

This finding suggested the potential multi-target effects of the extract in mitigating both 

inflammatory and oxidative responses within cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Venn diagram analysis illustrates the overlap between bitter leaf extract protein targets 
and those linked to inflammation and oxidative stress. Sixty-three proteins exhibited overlap with 
inflammation (A), while 62 proteins overlapped with oxidative stress (B), implying the potential 
modulation of pathways. Furthermore, 24 targets were shared among bitter leaf extract, 
inflammation, and oxidative stress, indicating the possibility of multi-target effects in alleviating 
both cellular responses (C). 
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Protein-protein interactions (PPIs) 

PPIs in antioxidant activity 

The top 15 protein-protein interactions (PPIs) linked to antioxidant activity are presented in 

Table 2. The results of the PPI network highlighted distinctive features for the SRC and STAT3 

proteins within the antioxidant network. SRC exhibited a high degree of 15, indicating its 

interactions with 15 other proteins in the network. While SRC served as a bridge connecting other 

proteins to some extent, as indicated by its betweenness centrality score of 0.117 (closeness 

centrality: 0.385). STAT3 had a degree of 10, which was slightly lower than SRC.  

Table 2. The top 15 protein-protein interactions (PPI) linked to antioxidant activity 

Protein name Degree Betweenness centrality Closeness centrality 
SRC 15 0.117 0.385 
CYP3A4 12 0.216 0.392 
ESR1 12 0.266 0.427 
STAT3 10 0.279 0.431 
CYP2C19 9 0.135 0.382 
CYP2C9 9 0.105 0.373 
HSP90AA1 9 0.047 0.364 
MAOB 9 0.083 0.329 
MAOA 9 0.083 0.329 
AKT1 9 0.023 0.367 
CTNNB1 8 0.023 0.338 
EGFR 8 0.016 0.359 
MAPK8 8 0.054 0.364 
PIK3CA 8 0.018 0.341 
BCL2 7 0.050 0.341 

 

However, its betweenness centrality score (0.789) was higher than SRC, where the closeness 

centrality value was 0.431. The illustration of the connectivity network of proteins related to 

antioxidant activity is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 2. The PPI network associated with antioxidant activity. The increasing purple color 
indicated higher degrees, while the increasingly yellow color signified lower degrees. 
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PPIs in anti-inflammatory activity 

The top 15 protein-protein interactions (PPIs) associated with anti-inflammatory activity are 

presented in Table 3. STAT3 emerged as a central player with extensive interactions, reflected 

in its high degree value of 14. SRC exhibited strong interconnectedness within the network, with 

a degree of 13. PIK3CA and ESR1 both had a degree of 9, reflecting their similar roles in anti-

inflammatory mechanisms. Regarding betweenness centrality, STAT3 and CXCL8 stood out with 

the highest values, suggesting their crucial intermediary roles in connecting proteins, while SRC 

and MMP9 also exhibited higher betweenness centrality.  

Table 3. The top 15 protein-protein interactions linked to anti-inflammatory activity 

Protein name Degree Betweenness centrality Closeness centrality 
STAT3 14 0.582 0.377 
SRC 13 0.218 0.336 
PIK3CA 9 0.019 0.278 
ESR1 9 0.029 0.315 
AKT1 8 0.032 0.310 
EGFR 7 0.012 0.308 
MAPK8 7 0.069 0.310 
CTNNB1 6 0.001 0.270 
JAK2 6 0.010 0.303 
MMP9 6 0.141 0.269 
CXCL8 5 0.473 0.308 
JAK1 5 0.005 0.290 
CREBBP 5 0.010 0.303 
PRKCD 4 0.010 0.267 
MMP2 4 0.093 0.308 

 

In terms of closeness centrality, STAT3, ESR1, and MAPK8 displayed high values, indicating 

their strategic positions within the network and potential influence over other proteins. The 

illustration of the key proteins involved in anti-inflammatory activity and their connectivity 

within the network are presented in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The PPI network associated with anti-inflammatory activity. The increasing purple color 
indicates higher degrees, while the increasingly yellow color signifies lower degrees. 
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Enrichment of GO and KEGG pathway 

Enrichment of GO and KEGG pathway linked to antioxidant activity  

Understanding gene functions and their interrelationships across three domains—cellular 

component (CC), molecular function (MF), and biological process (BP)—is made possible by gene 

ontology (GO). Ten important GO terms were found for every compound in the GO enrichment 

analysis of 342 possible antioxidant targets (p<0.01, Figure 4A). Bitter leaf compounds 

appeared to exert their antioxidant effects through several molecular regulatory mechanisms, 

including the positive regulation of transcription, the negative regulation of gene expression, and 

the inhibition of apoptosis.  

These compounds target a range of cellular components such as the cytoplasm, plasma 

membrane, cytosol, membrane, and mitochondrion, suggesting extensive antioxidant activity. 

Targeting a spectrum of cellular components, including the cytoplasm, plasma membrane, 

cytosol, membrane, and mitochondrion, these molecules imply great antioxidant action. Enzyme 

binding, protein phosphatase binding, oxidoreductase activity, and protein serine/threonine 

kinase activity are among the molecular roles connected with these molecules.  

These properties suggest that several pathways, including cellular signaling, metabolism, 

and redox control, govern the antioxidant actions of bitter leaf. Additionally, the KEGG pathway 

enrichment analysis highlighted that pathways related to chemical carcinogenesis and receptor 

activation were significantly enriched among the top ten entries, where the results are presented 

in Figure 4B. This finding suggested that the antioxidant properties of bitter leaf are connected 

to pathways involved in chemical-induced cancer development and receptor activation, pointing 

to potential mechanisms through which bitter leaf exerts its beneficial effects. 

Enrichment of GO and KEGG pathway linked to anti-inflammatory activity  

For each compound, the GO enrichment analysis of 341 potential anti-inflammatory targets 

identified 10 significant GO terms (p<0.01, Figure 5A). The findings suggested that bitter leaf 

compounds may help reduce inflammation through various biological mechanisms. These 

include suppressing gene expression, regulating signal transduction, and promoting the 

transcription of DNA. By targeting key parts of the cell, such as the plasma membrane, cytoplasm, 

cytosol, nucleus, and nucleoplasm, these compounds can influence inflammatory responses at 

multiple levels. The molecular functions linked to bitter leaf compounds, like protein kinase 

activity, ATP binding, and enzyme binding, point to several pathways that may help to reduce 

inflammation. These activities highlighted their potential role in important signaling processes 

and enzymatic reactions related to inflammation. 

The KEGG pathway enrichment analysis further supported these findings by highlighting 

significant enrichment of pathways associated with cancer, hepatitis B, and Kaposi's sarcoma-

associated herpesvirus (KSHV) infection (Figure 5B). This enrichment suggested that the anti-

inflammatory effects of bitter leaf compounds may intersect with pathways involved in cancer 

progression and viral infections. The presence of these pathways suggested potential interactions 

or shared molecular mechanisms between inflammatory responses, cancer, and viral infections, 

emphasizing the complex nature of the anti-inflammatory effects of bitter leaf. 

Molecular docking 

The analysis of ligand-protein interactions revealed several important insights, as illustrated in 

the heatmap (Figure 6). Quinazoline demonstrated a strong connection with the SRC protein, 

with a binding-free energy (BFE) of -9.76 kcal/mol, indicating a high level of affinity. Similarly, 

Midazolam demonstrated a strong affinity to the CYP3A4 protein, with a BFE of -11.93 kcal/mol. 

Genistein also had a very strong interaction with the ESR1 protein, showing a BFE of -9.43 

kcal/mol. Additionally, SD36 had a strong interaction with the STAT3 protein, with a BFE of -

9.12 kcal/mol. Quinazoline naturally binds to SRC, Midazolam to CYP3A4, Genistein to ESR1, 

and SD36 to STAT3. Bitter leaf extract compounds, such as eicosapentaenoyl ethanolamide 

(EPEA), also displayed strong interactions with proteins like SRC (-7.17 kcal/mol) and CYP3A4 

(-6.88 kcal/mol) but showed weaker affinity with ESR1 (-3.41 kcal/mol) and STAT3 (-4.56 

kcal/mol). Additionally, trans-4-Pentylcyclohexanecarboxylic acid interacted with ESR1, yielding 

a BFE of -7.02 kcal/mol. 



Sailah et al. Narra J 2024; 4 (3): e1016 - http://doi.org/10.52225/narra.v4i3.1016        

Page 9 of 20 

O
ri

g
in

al
 A

rt
ic

le
 

 

 

 
 

 

  

Figure 4. GO and KEGG pathway enrichment related to antioxidant activity. (A) Gene Ontology 
(GO) analysis; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. 
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Figure 5. GO and KEGG Pathway Enrichment related to anti-inflammatory activity. (A) Gene 
Ontology (GO) analysis; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
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Figure 6. Heatmap of the interactions between compounds present in bitter leaf and target 
proteins (SRC, CYP3A4, ESR1, and STAT3). The values indicate the binding-free energy (BFE) in 
kcal/mol. The lower the BFE value, the stronger the interaction between the compound and the 
target protein. 

Both Quinazoline-SRC and EPEA-SRC complexes are involved in a combination of Van der 

Waals forces, hydrogen bonds, and Pi interactions (Figure 7). Importantly, EPEA-SRC showed 

a wider variety of interactions, which might lead to more flexible and resilient binding, with 

binding-free energies (BFEs) of -9.76 kcal/mol and -7.17 kcal/mol, respectively. In a similar way, 

Midazolam-CYP3A4 and EPEA-CYP3A4 formed extensive Van der Waals and hydrogen bonds. 

The additional salt bridges and charge interactions in Midazolam-CYP3A4 suggested a stronger 

and more targeted binding, with BFEs of -11.93 kcal/mol. When looking at Genistein-ESR1 and 

trans-4-Pentylcyclohexanecarboxylic acid-ESR1, significant interactions are observed, where Pi 

interactions in Genistein-ESR1 likely contribute to a more stable binding, reflected by BFEs of -

9.43 kcal/mol. The SD36-STAT3 and EPEA-STAT3 complexes showed different interaction 

patterns, with SD36-STAT3 exhibiting stronger binding, while EPEA-STAT3 had weaker binding, 

with BFEs of -9.12 kcal/mol and -4.59 kcal/mol, respectively (Figure 7). 

Molecular dynamics simulation 

The EPEA-SRC complex was chosen for an evaluation of their interaction stability through 

molecular dynamics simulations (MDS) due to its possibility of having strong and adaptable 

binding.  Throughout the simulation, RMSD values fluctuated within the range of approximately 

0.1 nm to 0.3 nm (Figure 8A). Notably, the protein backbone achieved a relatively stable 

conformation after initial fluctuations, with minor deviations suggesting dynamic stability 

(Figure 8A). The root-mean-square fluctuation (RMSF) of values varies considerably among 

different residues, with peaks indicating regions of higher flexibility within the protein structure 

(Figure 8B). Terminal residues exhibited particularly high fluctuations, a common occurrence 

reflecting inherent flexibility (Figure 8B). 

The RMSD of the ligand EPEA exhibited higher variation, ranging from approximately 0.1 

nm to 0.35 nm (Figure 8C). The graph suggested periods of both stability and significant 

movement relative to the protein, hinting at dynamic interactions and potential conformational 

changes during binding (Figure 8C). The number of hydrogen bonds formed between the ligand 

and the protein fluctuates between 0 and 4 (Figure 8D). Spikes indicated instances of multiple  
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Figure 7. Molecular interactions between various ligands and their target receptors: (A) 

quinazoline with SRC; (B) EPEA with SRC; (C) midazolam with CYP3A4; (D) EPEA with CYP3A4; 

(E) genistein with ESR1; (F) trans-4-Pentylcyclohexanecarboxylic acid with ESR1; (G) SD36 with 

STAT3; (H) EPEA with STAT3. 
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hydrogen bonds, potentially corresponding to tighter binding periods. This variability suggested 

multiple dissociation and reassociation events between the ligand and the protein binding site 

(Figure 8D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. A molecular dynamic simulation trajectory of the ligand EPEA and the receptor SRC 

kinase from 0 ns to 100 ns. (A) Protein after fit to the backbone; (B) protein RMSF; (C) ligand 

after fitting to protein; and (D) ligand hydrogen bonds.  

 

The investigation into the positioning of the ligand EPEA and its interactions with the SRC 

kinase receptor has yielded significant findings across these time points (Figure 9). Initially, at 

0 ns, EPEA was found ensconced within the binding pocket of the SRC kinase receptor, 

establishing key interactions through van der Waals forces, including higher conventional 

hydrogen bonding (H-bonds) with specific amino acids such as Tyr A:340 and Met A:341. By the 

50 ns mark, while the ligand persisted within the binding pocket, there were discernible shifts, 

possibly indicating dynamic rearrangements.  

 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The position of the ligand EPEA within the binding pocket of the SRC kinase receptor 
over the course of the simulation. (A) At 0 ns; (B) at 50 ns; and (C) at 100 ns. The interactions, 
particularly the hydrogen bonds and van der Waals interactions, play a crucial role in stabilizing 
the ligand. The persistence of these interactions suggests a stable binding affinity, which is 
essential for the ligand's efficacy. 

Despite these changes, interactions, particularly van der Waals forces, continued to be 

significant, with persistent hydrogen bonding, especially with Met A:341 and Tyr A:340. 

Additionally, new interactions may have emerged, or existing ones may have strengthened. As the 

simulation reached 100 ns, the ligand stayed centrally located within the binding pocket, showing 

A 

B 

C 

D 

B C A 
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extensive interactions with surrounding amino acids through van der Waals forces. A significant 

hydrogen bond persisted with Met A:341, along with interactions such as a carbon hydrogen bond 

with Tyr A:340 (Figure 9). 

The superimposition between the complex at 0 ns, 50 ns, and 100 ns is presented in Figure 

10. The ligand's position appears stable, indicating a relatively unchanged complex configuration, 

with an RMSD value remaining within the range of 1.680 Å. This indicated that the interaction 

between the ligand and the receptor remains consistent throughout the observed simulation 

period. 
 

 

Figure 10. Superimposition of the complex EPEA-SRC at 0 ns (magenta), 50 ns (yellow), and 100 
ns (cyan) reveal stable ligand positioning with minimal variation, maintaining an RMSD of 1.680 
Å, indicating consistent ligand-receptor interaction throughout the simulation. 

Discussion 
This study investigated Vernonia amygdalina, commonly known as bitter leaf, to evaluate its 

potential as an antioxidant and anti-inflammatory agent. The evaluation employed 

computational modeling techniques, including network pharmacology, molecular docking, and 

molecular dynamics simulations. According to GC-MS analysis, the extract from greenhouse-

dried leaves revealed the presence of 38 distinct compounds, categorized into 13 compound 

groups. Among these compounds, dimethylamine and acetonitrile were the most abundant. 

Notably, dimethylamine has previously been reported in this plant [40,41]. According to the 

Swisstarget prediction tool, herein, bitter leaf extract may have significant therapeutic potential 

in combating inflammation and oxidative stress by modulating multiple cellular pathways 

simultaneously. As suggested previously, this tool predicts the most likely protein targets of a 

small molecule based on similarities with known drugs [21,42]. 

The present study identified SRC and STAT3 as key elements in the antioxidant network, 

with SRC exhibiting strong connectivity and STAT3 acting as a crucial link. These findings 

emphasized their roles in antioxidant activities. Previous research has revealed that SRC, a non-

receptor tyrosine kinase, plays a crucial role in several cellular processes, such as cell growth, 

movement, attachment, and survival [43-45]. SRC plays a role in managing oxidative stress and 

inflammation by controlling antioxidant defense systems and the production of reactive oxygen 

species (ROS) [46,47]. When activated by pro-inflammatory cytokines, SRC can contribute to 

cancer progression. However, inhibiting SRC has been shown to lower inflammation and 

oxidative stress in situations like salt-induced hypertension [48,49]. Meanwhile, STAT3, a 

transcription factor, is key in how cells respond to cytokines and growth factors [50]. It regulates 

EPEA 
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gene expression related to oxidative stress and inflammation, with its activation leading to an 

increase in antioxidant enzymes and anti-inflammatory substances [51,52].  

The previous study has demonstrated that quinolines and quinazolines effectively inhibit 

SRC kinase activity [53]. For instance, quinazoline inhibits SRC kinase, a key player in the MAPK 

signaling pathway, by preventing it from functioning. This inhibition stops SRC kinase from 

activating downstream signaling molecules, which in turn reduces cytokine production. 

Considering EPEA's strong binding affinity for SRC kinase, it is plausible that EPEA could 

similarly interfere with the MAPK signaling pathway, leading to a reduction in cytokine 

production, which suggests its potential as a therapeutic agent. 

Herein, SRC and STAT3 were identified as key targets in the antioxidant network, which may 

be modulated by the bioactive compounds in bitter leaf. This modulation could strengthen 

cellular defenses, reduce oxidative damage, and alleviate inflammation, thereby enhancing the 

leaf's overall antioxidant capacity. Understanding the interactions between bitter leaf compounds 

and SRC/STAT3 pathways could provide insights into its molecular mechanisms and aid in 

developing antioxidant-rich supplements or pharmaceutical interventions for oxidative stress-

related diseases. A previous study suggested that modulating SRC and STAT3 activity can impact 

cell growth, inflammation, cancer progression, angiogenesis, and immune responses, making 

them attractive targets for therapeutic interventions [54].  

The present study demonstrated that EPEA exhibited a high binding affinity for both SRC 

protein and CYP3A4, with binding free energies of -7.17 and -6.88 kcal/mol, respectively. This 

finding indicated significant pharmacological implications. When EPEA binds to SRC with a 

strong affinity, it could potentially influence these signaling pathways. For instance, it could affect 

the SRC kinase-mediated signaling pathways involved in tumor progression, invasion, and 

metastasis in various cancers, including breast cancer [55]. Moreover, SRC interacts with other 

proteins to promote their degradation or protect them from degradation, which could also be 

influenced by EPEA binding.  

CYP3A4 is a member of the cytochrome P450 superfamily of enzymes, which are involved in 

the metabolism of various substances, including drugs and endogenous compounds [56]. The 

present study suggested that EPEA binding to CYP3A4 may influence the enzyme's metabolic 

activity. For instance, CYP3A4 also possesses epoxygenase activity, metabolizing arachidonic acid 

to epoxyeicosatrienoic acids (EETs), which have a wide range of activities, including the 

promotion of certain types of cancers [57,58]. EPEA binding could potentially influence this 

process. Furthermore, EPEA could be converted to other metabolites via CYP epoxygenases, 

which could have various biological effects. The exact consequences of EPEA binding to SRC and 

CYP3A4 depend on the cellular context and require further research.  

However, while binding scores indicate the strength of interaction, they do not necessarily 

predict the biological outcome, which can be influenced by various factors. Consequently, the 

stability of the EPEA-SRC interaction was additionally examined through MDS, a computational 

technique that visualizes the dynamics of atoms and molecules within biological systems [59]. 

The results indicated that during the 100 ns simulation, EPEA remained bound to the same site 

on the protein, signifying its strong affinity for SRC. This was corroborated by the presence of 

multiple types of bonds, particularly hydrogen bonding and covalent bonds, reinforcing this 

interaction [60]. 

The suggested actions by which EPEA suppresses the activity of several proteins engaged in 

inflammation are presented in Figure 11. The compounds inhibit SRC kinase, resulting in lower 

SRC substrate phosphorylation. This inhibition prevents the activation of the nuclear factor 

kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and signal transducer and activator 

of transcription (STAT) pathways, reducing the expression of genes that induce inflammation. 

Furthermore, EPEA reduces the activity of STAT and ESR1 (ERα) proteins. STAT3 is a 

transcription factor that, upon activation by Janus kinase (JAK) associated with membrane 

receptors, facilitates the promotion of inflammatory responses [61]. ESR1 can also modulate the 

immune response by reducing estrogen signaling that causes excessive inflammation. 

Additionally, ESR1 can promote controlled inflammation, and its inhibition might weaken this 

response  [62]. As a result, the production of pro-inflammatory cytokines is then reduced, 

resulting in fewer inflammatory cells migrating and adhering to the site of inflammation. The 
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inflammatory reaction eventually subsides, and the tissue returns to its normal state. This process 

is known as the resolution of inflammation. 

 

Figure 11. EPEA acts as an anti-inflammatory agent by inhibiting SRC kinase, STAT3, and ESR1 
(ERα) activities, thereby preventing expression of inflammation-inducing genes. These activities 
decrease pro-inflammatory cytokines and reduce cell migration and adhesion at inflammation 
sites. 

The antioxidant activities of EPEA are associated with its capacity to decrease oxidative 

stress, a crucial element in the onset and advancement of inflammation. When the body cannot 

neutralize reactive oxygen species (ROS) using antioxidants, a condition known as oxidative 

stress results. Acting as an antioxidant, EPEA neutralizes ROS, therefore reducing oxidative 

stress and the ensuing inflammation. This wide activity of EPEA emphasizes its anti-

inflammatory properties. 

Though these findings implied a strong and lasting interaction between EPEA and SRC, it is 

essential to recognize that the biological consequences of this interaction can be influenced by 

various factors and are not solely determined by binding scores or interaction stability. Many 

other factors can influence the outcome. To truly grasp the significance of this interaction, more 

research is needed—this includes experimental validation, studying how it affects SRC activity 

and related signaling pathways, and evaluating its potential for therapeutic use.  

It also should be noted that the present study's reliance on computational simulation may 

not fully reflect in vivo conditions, potentially affecting the accuracy of observed interactions and 

effects. GC-MS analysis also has limitations, including challenges with complex samples and non-

volatile compounds that can hinder accurate identification and quantification. Variations in 

sample preparation and instrument calibration can further impact accuracy. Additionally, the 

research did not address the bioavailability and metabolic pathways of EPEA and other bitter leaf 

compounds, which are crucial for assessing their efficacy and safety in clinical use. The scope was 

limited to specific targets like SRC and CYP3A4, leaving out other potential mechanisms and 

targets. Experimental validation is needed to confirm their biological relevance.  

Moreover, the complexity of natural compounds presents challenges in isolating their specific 

effects, and the interactions among various bioactive components in bitter leaf were not fully 

explored. 
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Conclusion 
The findings of the present study suggest that SRC is a key therapeutical target of bitter leaf's 

bioactive compounds, particularly EPEA. Its strong binding to SRC supports its potential as a 

promising anti-inflammatory agent by inhibiting SRC kinase, which in turn affects STAT3 and 

ESR1, thereby reducing inflammatory pathways and pro-inflammatory cytokines. Additionally, 

EPEA’s antioxidant properties mitigate oxidative stress. However, the findings from the present 

study warrant further investigation on bitter leaf’s pharmacological mechanisms, bioavailability, 

and formulation strategies. 
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